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Abstract 

The natural environment is burdened with a broad range of toxic chemicals, and 

there is a need to develop a tool that can accelerate the pace at which we learn how 

chemicals impact disease.  This work developed an artificial neural network (ANN) 

based model that constructed chemical-disease relationships for chemicals found in the 

Comparative Toxicogenomics Database.  A new chemical classification system, based on 

the molecular weight, hydrogen donors, and hydrogen acceptors, was created to identify 

chemicals with a unique number that is directly related to these structural properties of 

the chemical.  Diseases were grouped into 27 categories and the chemical-disease 

associations were made between the chemical and its associated disease category.  The 

ANN model was successfully trained and tested to associated 75 chemical with the 27 

disease categories. Simulations with training-validation-testing ratios of 70-15-15 percent 

produced coefficients of determination equal to 0.99, and the Levenberg-Marquardt 

backpropagation function provided the best network performance.  To help validate the 

model, the ANN was also used to evaluate chemical-disease relationships for three 

uncurated chemicals.  Results showed that ANNs have the potential to predict disease 

associations for uncurated chemicals and to guide research for curated chemicals that 

may require further toxicological testing. 

 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 

To my wife and grandpa  

 
 

 
 



 

v 

 

Acknowledgments 

I would like to thank my advisor Dr. Willie Harper for his guidance and direction 

throughout the process of this thesis effort.  His input was extremely valuable and greatly 

appreciated.  I would also like to thank committee members Lt Col Tay Johannes and Lt 

Col Dirk Yamamoto for their support and insight.  Additionally, I would like to thank Dr. 

Michael Grimalia for his efforts in obtaining data files from the CTD. 



 

vi 

 

Table of Contents 

Page 

Abstract .............................................................................................................................. iii 

Acknowledgments................................................................................................................v 

Table of Contents ............................................................................................................... vi 

List of Figures .................................................................................................................. viii 

List of Tables ..................................................................................................................... ix 

I.  Introduction .....................................................................................................................1 

Significance of Research .................................................................................................4 
Implications of Research .................................................................................................5 

II. Literature Review ............................................................................................................6 

The relationships between chemical properties and disease ...........................................6 
Using Artificial Neural Networks in medical research ...................................................7 

ANN in diagnosis ........................................................................................................9 
ANN in predictions ...................................................................................................11 

III. Research Objectives .....................................................................................................13 

IV. Methodology ................................................................................................................15 

Overview .......................................................................................................................15 
Chemical Classification System ....................................................................................15 
Data ...............................................................................................................................17 

Chemicals .................................................................................................................18 
Diseases ....................................................................................................................31 

Artificial Neural Network .............................................................................................33 
Input and Output Data ...................................................................................................34 
Simulations ....................................................................................................................36 
Analysis and Results .....................................................................................................38 

V. Analysis and Results .....................................................................................................40 

ANN Training Results ..................................................................................................40 
ANN Model Performance for Curated Chemicals ........................................................56 

Effect of Training Ratio on Model-Predicted Disease .............................................56 
Chemical Trends for Undertrained Model Simulations ...........................................58 



 

vii 

 

Chemical Trends for Overtrained Model Simulations .............................................61 
ANN Model Performance for Uncurated Chemicals ....................................................63 

VI. Conclusions and Recommendations ............................................................................68 

Research Conclusions ...................................................................................................68 
Recommendations for Future Research ........................................................................70 

Appendix A: MATLAB ANN Code ..................................................................................71 

Appendix B: Input and Output Matrices ............................................................................75 

Appendix C: Additional MATLAB Training Sessions ...................................................106 

Appendix D: TVT Graphs ...............................................................................................122 

Appendix E: List of Training Functions ..........................................................................128 

Appendix F: Training Function Plots ..............................................................................130 

Appendix G: Uncurated chemical data ............................................................................146 

References ........................................................................................................................148 

Vita  ..................................................................................................................................154 

  



 

viii 

 

List of Figures 

Page 

Figure 1: New Chemical Classification Example ............................................................. 17 

Figure 2: Artificial Neural Network Example .................................................................. 34 

Figure 3: Typical MATLAB ANN Training Session ....................................................... 41 

Figure 4: Typical MATLAB Actual Disease versus ANN Derived Disease Outputs Plot

 ................................................................................................................................... 44 

Figure 5: Typical MATLAB ANN Performance Plot ...................................................... 45 

Figure 6: Typical MATLAB ANN Mean Squared Error Plot .......................................... 46 

Figure 7: Typical MATLAB ANN Regression Plot ......................................................... 47 

Figure 8: Typical MATLAB ANN Training States .......................................................... 48 

Figure 9: Typical MATLAB ANN Error Histogram Plot ................................................ 49 

Figure 10: TVT Ratio Effect on the Coefficient of Determination .................................. 52 

Figure 11: Training Function Effect on the Coefficient of Determination ....................... 55 

Figure 12: Effect of TVT Ratio on MATLAB ANN Derived Disease ............................. 57 

Figure 13: Effect of Undertrained TVT Ratio (50-25-25 %) on MATLAB ANN Derived 

Disease ....................................................................................................................... 59 

Figure 14: Effect of Overtrained TVT Ratio (90-5-5 %) on MATLAB ANN Derived 

Disease ....................................................................................................................... 62 

Figure 15: MATLAB ANN Derived Diseases for NCC Cystaphos ................................. 64 

Figure 16: MATLAB ANN Derived Diseases for NCC 6-HO-BDE-47 .......................... 66 

Figure 17: MATLAB ANN Derived Diseases for NCC 4,4'-diiodobiphenyl .................. 67 



 

ix 

 

List of Tables 

Page 

Table 1: Chemical Information ......................................................................................... 20 

Table 2: Disease Groupings .............................................................................................. 32 

Table 3: Species Table ...................................................................................................... 35 

Table 4: Acetone Input and Output Matrices .................................................................... 36 

Table 5: The Effect of TVT Ratio on Network Training Statistics .................................. 51 

Table 6: The Effects of Training Functions on Network Training Statistics .................... 54 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

1 

 

 ARTIFICIAL NEURAL NETWORK PREDICTION OF CHEMICAL-DISEASE 
RELATIONSHIPS USING READILY AVAILABLE CHEMICAL PROPERTIES 

 I.  Introduction 

The natural environment is burdened with a broad range of toxic chemicals, 

including petroleum products, metals, pesticides, pharmaceutical compounds, organic 

solvents, and numerous other hazardous substances. Most of these chemicals have the 

potential to cause ecological harm and they also pose significant risks to human health. 

Toxicological testing has helped reveal the connections between specific chemicals and 

health risk factors, but experimental testing on indicator species is expensive and time 

consuming, while testing on humans is illegal and unethical. There is a need to develop a 

tool that can accelerate the pace at which we learn how chemicals impact disease.  Such a 

tool would allow the benefits of a given chemical to be weighed against the risks to the 

environment and public health. 

Risks to the environment and to public health are governed by the interactions 

between chemicals, environmental factors, and the genes that modulate important 

physiological processes, and there are large databases containing information that can be 

used to advance fundamental understanding. For example, the Comparative 

Toxicogenomics Database (CTD) is a publicly available research resource that includes 

curated data describing cross-species chemical–gene/protein interactions and chemical– 

and gene–disease associations. The CTD contains over 800,000 chemical–gene 

interactions, more than 12,400,000 gene-disease associations, and over 1,300,000
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chemical-disease associations (Davis et al., 2013). These data can be used to develop 

insights into complex chemical–gene and protein interaction networks. 

The existing CTD data can be used to develop a model than can predict the effect 

of chemical structure on public health risk.  For such a model, Artificial Neural Networks 

(ANN) can be used.  ANNs are flexible mathematical models that are capable of 

identifying complex nonlinear relationships between input and output data sets.  These 

models are especially useful when it is too difficult to use conventional mathematical 

equations.  ANNs recognize patterns and they work by converting input data into 

numerical values that are propagated through a network of neurons.  The network of 

neurons processes the data given to the network by attempting to find patterns in the data 

so that inputs can be correlated outputs.  ANNs have been used for a wide range of 

environmental and public health applications and they are ideal when there is a large 

amount of data available for ANN development. 

One obstacle in investigating chemical-disease relationships is the lack of a useful 

chemical classification system; one that uses specific chemical characteristics to assign 

chemical identification numbers. Currently, several individual classification systems 

provide unique classification numbers for each chemical; however, these numbers are not 

related to the properties of the chemical and often are randomly assigned. Therefore, 

developing a modified chemical classification system is an important task for the 

development of chemical–disease relationships. It would permit policy makers and 

scientists to anticipate diseases that would be likely associated with new chemicals or 

existing chemicals that require further testing. 
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The Environmental Protection Agency (EPA) and National Science Foundation 

(NSF) have expressed interest in chemical-disease relationships for the purpose of 

characterizing chemical lifecycles. In 2013, as part of a joint solicitation, the EPA and 

NSF requested research be conducted that studies the lifecycles of synthetic chemicals, 

including a focus on their impacts on human health and the ecology (National Science 

Foundation, 2013).  ANNs could provide an appropriate tool to investigate chemical life-

cycles, especially when analyzing chemical-disease associations. Understanding how 

chemicals interact in a given environment and how they could affect surroundings play a 

role in the lifecycle of a chemical. 

The EPA could also use an ANN tool to add important chemical association 

information to the Toxic Substances Control Act (TSCA) inventory.  When the TSCA 

was implemented in 1976, over 62,000 chemicals were grandfathered into the inventory 

without any knowledge of their potential affects (Environmental Protection Agency, 

2013).  In the past 38 years, the number of chemicals in the TSCA inventory has grown 

to over 84,000, yet only 4 chemicals are specifically addressed within the TSCA 

document and only a few others have been regulated or banned in the United States 

(Congressional Digest, 2010).  With so many chemicals with unknown chemical-diseases 

associations existing in the TSCA inventory, a simple analytical tool to generate 

chemical-disease association predictions may provide valuable information for 

potentially unknown harmful chemicals.  Using a predictive ANN to generate potential 

chemical impacts could increase the usefulness of the TSCA. 
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Significance of Research 

With the ability to generate predictions of unknown chemical-disease 

relationships, the ANN provides the possibility of being a useful tool for researchers in 

the science and medical fields investigating the potential effects of new chemicals.  A 

network that could point researchers towards the effects a chemical will have could help 

save valuable time and resources when it comes to creating and testing chemicals.  When 

used as a screening and prioritization tool, an ANN may be useful in influencing where 

researchers begin testing and analyzing chemicals.  As the network is expanded through 

future research, it could potentially be used to predict potential interactions other than just 

chemical-disease associations.  Refining the classification number and training the 

network with different outputs could allow the network to predict how chemicals may 

interact if released in to a natural environment.  An ANN with this type of capability 

could be adjusted to work with the Environmental Protection Agency and National 

Science Foundation’s research request for using networks to characterize the lifecycle of 

chemicals.  Additionally, valuable information could be added to the TSCA inventory 

providing data on potentially harmful chemicals which were grandfathered into the 

system with no known associations.  The true significance of using an ANN to predict 

chemical-disease associations will become more evident as further research and testing is 

done to refine the ANN model.  As the model becomes more efficient and produces more 

accurate results, it will be more useful to the scientific community in the screening of 

new chemicals. 
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Implications of Research 

After investigating the research objectives and analyzing the results of the ANN 

simulations, it can reasonably be assumed that a MATLAB ANN can be used to analyze 

chemical and disease data and formulate a network that can possibly predict future 

chemical-disease associations.  The creation and use of a new chemical classification 

system with an ANN was also demonstrated and results show that a new classification 

method could be advantageous when working with chemical-disease interactions.  

Although the classification system developed worked for the simulations conducted in 

this research, it does not mean that the classification represents the best method or uses 

the most appropriate chemical properties in the classification number.  However, it does 

indicate that a classification number based on chemical attributes is certainly a possibility 

and be useful in research and experimentation.  Similar to the classification system, the 

ANN shows the potential for developing networks that can predict chemical-disease 

relationships; however, the current network may not provide the best performance 

possible.  Training-validating-testing (TVT) ratios and training functions play important 

roles in the development of the ANN and show strong correlation to how well the 

network performs, but there are many other factors that can be edited and tested that 

could improve network further.  Using data from the CTD shows that a network could be 

created on a larger scale and not be bound to specific groups of chemicals or diseases.  

Combining the CTD data with the new classification system and ANN confirms that 

chemical-disease association prediction can be accomplished on a large scale, not just in 

smaller quantitative structure-activity relationship research studies. 
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II. Literature Review 

The relationships between chemical properties and disease 

Several studies have explored the relationship between chemical properties and 

health risk factors or physiological impacts on indicator species. For example, Schultz et 

al., 2002 discovered positive relationships among 120 different aromatic compounds and 

estrogenicity based on the number of hydrogen bond donating groups in the aromatic 

compound. They also found that the number of hydrogen bond accepting groups was 

negatively linked to estrogenicity. Fang et al., 2001 looked at 230 natural and synthetic 

steroids and discovered that estrogenicity related negatively to the number of hydrogen 

bond donating groups in the steroid. They also discovered that estrogenicity was 

positively linked to the octanol-water partition coefficients of the steroids. Lipinski et al., 

2012 expanded on this research looking at 2500 organic compounds and discovered 

similar results to that of Fang et al. Quantitative structure activity relationships are not 

limited to only estrogenicity, as they have been used to model numerous other chemical-

disease relationships.  Ren, 2002 found that hydrophobicity and hydrogen bonds could be 

used to predict the toxicity of a chemical and Svetnik et al., 2003 determined molecular 

weight could be used to predict a chemical’s biological activity.  Wu et al., 2013 also 

discovered that hydrophobicity and electron density can predict antibacterial qualities of 

chemicals. This previous work shows that structural properties of chemicals can be used 

to predict associations between chemicals and other factors. 
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Using Artificial Neural Networks in medical research 

ANNs are flexible, mathematical models capable of identifying complex, 

nonlinear relationships in data sets.  They are capable of discovering patterns in large 

amounts of data and have been shown to be useful in environmental and public health 

applications (Beale et al., 2013).  ANNs take a set of input and output data and develop 

correlations between the two data sets by using hidden layers of mathematical formulas, 

weights, and biases.  The formulas are determined by the type of training function 

specified to be used by the network during the simulation.  The weights and biases are 

placed on the input data as the network is tested and they can be adjusted to help improve 

network performance.  After testing the known input and output data with the training 

function formulas, weight, and biases, the network derives outputs that are compared to 

the actual outputs. 

When setting up an ANN, two important parameters of a network are the TV ratio 

and the training function.  TVT ratios establish how the data is divided for use in training, 

validating, and testing the network model.  Training functions are the algorithms that 

determine how the network trains the data while it attempts to find patterns and 

correlations between the input and output data (Beale et al., 2013).  The use of 

appropriate TVT ratios is important for optimizing network performance because the 

ratios will determined if a network is undertrained or overtrained.  Seguritan et al., 2012 

found that testing different training and validation ratios did not provide any significant 

difference in the overall network performance, but adjusting the testing ratio did show 

potential for increasing performance.  Ahmad and Gromiha, 2003 calculated high ANN 
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prediction accuracy rates when using TVT ratios that used a majority percentage of the 

data training the network and Guyon, 1997 found that the ratio of validation data to 

training data should be between 10 and 25 percent.  Singh et al., 2011 compared three 

training functions in a neural network and found the trainbr function provided the best 

network performance, but that more than three functions should be tested to truly find the 

function that best fits the network.  Guenther and Frauke, 2010 showed that resilient 

backpropagation functions performed well in regression ANNs but indicated only three 

types of functions were tested and other functions may provide similar or better results.  

Ferrari and Stengel, 2005 found that algebraic training functions may be used to create 

linear correlations from non-linear datasets with multiple input and output variables. 

Overall, research has shown that ANN can be useful in diagnostic and predictive 

applications when provided the proper data.  ANNs have been used in the medical 

community to address concerns related to specific diseases or groups of diseases. For 

example, Stephan et al., 2009 used ANNs to distinguish between benign and malignant 

prostate cancer and Santos-Garcia et al., 2004 used ANNs to predict morbidity from 

cardio respiratory failure as a result from non-small cell lung cancer pulmonary resection. 

Curtis et al., 2001 used ANNs to associate genotypes with common human diseases and 

Sheppard et al., 1999 used ANNs to predict the risks of contracting cytomegalovirus 

disease after kidney transplantations. Nguyen et al., 2002 used ANNs to predict patient 

susceptibility to meningitis.   

Nearly all of the data used in the ANN analyses for clinical and medical research 

comes from hard to obtain data or data that requires a great deal of effort to acquire.  This 
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hard to obtain data often requires additional testing and information gathering to acquire 

the data needed for the ANN.  This often requires a great deal of time and resources from 

the medical personnel.  For example, Song et al., 2005 used ultrasound image results and 

interpretations from physicians to investigate the ANN diagnosis of breast masses and 

Viazzi et al., 2006 had to obtain cardiac and vascular ultrasound information from 

physicians and adjust it to work in the ANN model.  While useful in medical the medical 

field, many ANN applications require additional data or testing to successfully use the 

network.  

ANN in diagnosis 

ANNs have shown potential to be used in helping doctors diagnose lung diseases 

by analyzing clinical and radiological factors in addition to relying on chest radiographs. 

Abe et al., 2002 and Abe et al., 2004 presented evidence that radiologists could use ANN 

output data, in addition to x-rays, to diagnose lung diseases. Their findings indicated that 

using clinical factors in an ANN could potentially prove to be more useful when 

diagnosing interstitial lung disease. Ashizawa et al., 1999 also found that ANNs used by 

radiologists increased the accuracy of lung diseases diagnosis. Research performed by 

Feng et al., 2012 discovered that ANN proved capable of diagnosing lung cancer as well 

differentiating it from benign lung disease, gastrointestinal cancers, and control patients 

by analyzing various blood levels in patients. 

ANNs are not only limited to be used in diagnosing lung disease. In 2009, 

Babaoqlu et al. concluded that ANN could be used to analyze exercise stress testing data 
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to correctly diagnose coronary artery disease as well predict the locations of lesions near 

the heart. Lux et al., 2013 found that hereditary hemorrhagic telangiectasia could be 

diagnosed by obtaining mid-infrared spectroscopy from blood plasma and analyzing the 

data through an ANN instead of conducting the typical and costly clinical tests.  Matsuki 

et al., 2002 found that by taking clinical parameters and radiologic findings from high-

resolution CT scans and analyzing the data with an ANN, that radiologists could 

accurately diagnose nodules as benign or malignant without having to conduct further 

invasive testing on the patients.  Arterial blood gas values were predicted based off of 

venous blood gas values in an effort to better assess patients with acute exacerbations of 

chronic obstructive pulmonary disease (AECOPD) by Raoufy et al., 2011.  Arterial blood 

gas values provide the best diagnostic evidence of AECOPD but can be difficult to 

obtain.  Using an ANN to correlate venous blood gas values to arterial blood gas values 

provided an accurate method to detect AECOPD hypercarbia.  Deng et al., 1999 found 

that when ANNs were combined with MRIs, physicians were able to successfully 

diagnose Alzheimer’s disease in potential patients and Matake et al., 2006 found that the 

accuracy of radiologist diagnosis of hepatic masses increased when ANN were used to 

analyze nine clinical parameters from computed tomographic scans.  Hamilton et al., 

2006 successfully used ANNs to discriminate between parkinsonian syndrome and 

essential tremors based on the ratio of tracer accumulation between the caudate nucleus 

and putamen. This model provided a tool to diagnose parkinsonian syndrome early 

without confusing it with essential tremors.  
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ANN in predictions 

 In addition to aiding medical professionals in diagnostics, ANNs have also been 

shown to be useful in predicting diseases as well.  The different between predicting and 

diagnosing diseases is diagnosing is identifying a disease or condition that is already 

present.  Predicting uses current data to forecast potential future disease or conditions 

without any current symptoms.  For example, Biglarian et al., 2012 found that ANNs 

were useful is predicting distant metastasis in colorectal patients and that the ANN 

models were more accurate that logical regressions models.  Colak et al., 2008 created an 

ANN model that highlighted promising results for predicting coronary artery disease 

without the need to invasive testing for diagnosis. The work of Cucchetti et al., 2007 

demonstrated that ANNs were more accurate than the current model for end-stage liver 

disease used to prioritize patients with liver cirrhosis for donor organs and Ghoshal et al., 

2008 used ANN to predict the mortality of patients with cirrhosis of the liver. Using 

ANNs for this could help doctors better prioritize transplant candidates, potentially 

reducing the mortality rate of patients waiting for donor organs. Dagli et al., 2012 used an 

ANN to predict anemia in patients with Behcet disease. Their model provided a 99% 

correct anemia prediction rate using prohepcidin and hepcidin levels as well as several 

other common blood parameters. El-Solh et al., 1999 found that ANNs were more 

accurate in predicting pulmonary tuberculosis that medical assessments performed by 

physicians. Recurrence of non-invasive transitional cell carcinoma of the urinary bladder 

was predicted in an ANN model by Fujikawa et al., 2003 and the model proved to be 

more accurate than current prognosis techniques.  Matsui et al., 2002 developed an ANN 
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model that showed promising results for being able to replace old methods of predicting 

prostate cancer in Japanese men.  Although in need of further refinement, the model 

could be used to predict the pathological stage of prostate cancer.   Ning et al., 2006 

predicted levels of hypertension using physician and patients comment data in an ANN.  

ANNs were shown to be a possible tool for predicting Graves’ disease in patients as a 

result of antithyroid drug withdrawal by Orunesu et al., 2004 and Salvi et al., 2002 found 

that ANN could be used to predict the progression of thyroid-associated ophthalmopathy. 

The articles discussed in this literature review represent a sample of the articles 

that can be found on these topics.  It is meant to provide an understanding of previous 

work conducted with chemical-disease relationships and ANNs in the scientific and 

medical research communities by showcasing relevant research.  From analyzing 

previous research related to chemical-disease relationships and the use of ANNs in 

investigating chemical-disease associations, it can be concluded that with proper set-up, 

ANNs can be used to predict potential disease associations from various variable inputs.  

These previous efforts help to identify and define the research objectives for optimizing 

ANN performance and then using the network to predict chemical-disease associations. 
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III. Research Objectives 

From the analysis of the literature review, several areas of research became 

apparent that would attempt to solve the issues presented in Chapter 1.  The research 

objectives of this thesis are as follows: 

1) What chemical structural characteristics should be used to create a new 

chemical classification system capable of being used in identifying chemical-

disease associations?  The first problem addressed will be the creation of a 

new chemical classification system. Reviews of previous research efforts will 

be used to highlight potential chemical properties that could be successfully 

used to create a new numbering system. 

2) How can MATLAB ANN capabilities be used to connect chemicals to 

diseases using chemicals structural properties?  Before a predictive ANN can 

be created in MATLAB, it needs to be shown that the MATLAB ANN can 

properly analyze the input and output data of the new chemical classification 

system obtained from the CTD. Showing that the MATLAB ANN can be used 

for this purpose establishes the foundation needed to continue on to the next 

phase of research. 

3) What TVT ratio provides the best network performance?  Investigating the 

best TVT ratio to use with the chemical and disease data in the network is 
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important so that the network performs at the highest level possible. If a 

suboptimal TVT ratio is used, the predictability of the network will suffer. 

4) What training function provides the best network performance?  A proper 

training function used in the network is equally as important as a proper TVT 

ratio.  The training function establishes the algorithm the network will use to 

train the data and update the weights and biases of the network.  There are 

several training functions to choose from in the MATLAB ANN and each one 

trains the data differently. Determining the proper training ratio increases the 

prediction potential of the network. 

5) How can the network be used to predict diseases that are linked to uncurated 

chemicals?   The final step in addressing the problem statement is determining 

if the network can be used to accurately predict disease outputs. This will be 

done by creating an ANN with known chemical-disease relationship using 

curated chemical data from the CTD. Then, uncurated chemicals will be 

entered into the system and the outputs will be analyzed to see if the model 

can generate valid predictions. 
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IV. Methodology 

Overview 

 This chapter will discuss the methods used to acquire, test, and analyze the data in 

attempting to show that a predictive ANN model can be created to correlate chemicals to 

unknown disease associations.  The data source and required data information will be 

explained as well as how the ANN will be used to analyze the data.  The three 

simulations needed to complete the research will be addressed as well as how the output 

data will be analyzed to obtain the final results.  

Chemical Classification System 

A new numbering system was created that attempted to incorporate specific 

qualities of the chemical into the classification number while still ensuring that each 

chemical would have an individual and unique number.  From investigating previous 

research of quantitative structure activity relationships, several studies demonstrated that 

readily available physical properties of chemicals could be used to predict a chemical’s 

effect when used in an appropriate model (Schultz et al., 2002, Fang et al., 2001, Lipinski 

et al., 2012, Ren, 2002, Svetnik et al., 2003).  Using readily available chemical properties 

allows for a chemical classification system number to be created without extensive 

testing or data collecting.  

Three chemical traits that proved useful, particularly in a chemicals effect on 

estrogenicity, were molecular weight, hydrogen donors, and hydrogen acceptors (Lipinski 
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et al., 2012).  In addition to being successfully used in previous research, these three 

chemical traits are also fairly simple to obtain.  Without performing complex testing, the 

molecular weight can be easily calculated from the chemical formula while the hydrogen 

acceptors and donors are added up based on the number of lone pair electrons and atoms 

bonded to at least one hydrogen atom.  For example, the oxygen atom in water has one 

free pair of electrons so water has one hydrogen acceptor.  The oxygen atom in water is 

also connected to two hydrogen atoms so water has one hydrogen donor. 

The numbering system created gave each chemical a ten-digit number that was 

exclusive to that specific chemical.  The first six digits of the number correspond to the 

molecular weight of the chemical including two decimal places.  The seventh and eight 

digits represent the number of hydrogen acceptors and the ninth and tenth digits represent 

the number of hydrogen donors.  Figure 1 shows an example of how the new chemical 

classification number is created for water.  Water has a molecular weight of 18.015 

g/mol, 1 hydrogen acceptor, and 1 hydrogen donor.  Inputting these numbers into the new 

classification system, the new number generated for water is 0018020101. 
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Figure 1: New Chemical Classification Example 

The molecular weight in the classification number is assigned to the hundredths 

place to provide sufficient accuracy and uniqueness for identifying the chemical.  The 

number of hydrogen acceptors and hydrogen donors further reduce the possibility that 

two different chemicals would have the same classification number.  

Data 

The data used in the MATLAB simulations comes from the online CTD. The 

CTD is developed and maintained through a joint effort between North Carolina State 

University and Mount Desert Biological Laboratory and also receives financial support 

from the National Institute of Environmental Health Sciences. The primary goal of the 

CTD is to advance the understanding of the effects of environmental chemicals on human 

health through studying the relationships between chemicals, genes, and diseases. This 

online database is a collection of curated and uncurated data containing information for 

chemicals, genes, and diseases.  Curated data is data that has peer-reviewed, scientific 

research to prove existence of the data relationship (i.e. chemical-disease association).  
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Uncurated data does not have any literature showing interactions with other factors. The 

CTD contains over 800,000 chemical–gene associations, 12,400,000 gene-disease 

associations, and 1,300,000 chemical-disease associations with additional data and 

updates made weekly. Chemicals, genes, and diseases that are curated have been 

organized based on documented scientific research. Uncurated chemicals, genes, and 

diseases do not have the support of peer-reviewed research. While uncurated data do not 

have documentation to prove associations, the CTD does list possible associations 

through inferences. An inferred association between a chemical and a disease is 

established with a curated chemical-gene and gene-disease relationship. For example, 

acetone has a curated relationship with the catalase (CAT) gene and the CAT gene has 

been shown to affect asthma in humans.  There is no direct link between acetone and 

asthma but it can be inferred through the curated relationships with the CAT gene (Davis 

et al., 2013)  

The CTD website offers several organization and research functions that can be 

used to explore how the chemicals, genes, and diseases interact and related to one 

another. These functions allow users to research specific categories within the data and 

specify particular relationships of interest. In addition to the search functions, user can 

download entire sets of the database to use in simulations and research.  

Chemicals 

The chemicals used in the MATLAB ANN simulations were randomly chosen 

from the CTD.  As chemicals were selected, they were checked to make sure each 
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chemical was curated so that known disease associations existed to use in the network. 

Chemicals were also traced back to their most common ancestor chemical if they were a 

descendant.  Descendant chemicals were traced back to a common ancestor to ensure 

there was enough data to use in the simulations.  Once the ancestor chemicals were 

determined, the molecular weight, hydrogen acceptors, and hydrogen donors were 

determined and the new classification system number was generated for each chemical.  

Table 1 shows the list of chemicals used in the simulations, along with the classification 

number, chemical formula, and chemical structure diagram.  The chemical formulas and 

structure diagrams were included to show the diversity of the chemicals used.   
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Table 1: Chemical Information 

Chemical Name 
New 

Classification 
Number 

Molecular 
Formula Chemical Structure 

Acetone 0058080100 C3H6O 

 

Aciclovir 0225200804 C8H11N5O3 

 

Alprazolam 0308760300 C17H13ClN4 

 

Ammonium Sulfate 0132140402 H8N2O4S 

 

Aspirin 0180160401 C9H8O4 

 

Atenolol 0226340403 C14H22N2O3 
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Azithromycin 0748981405 C38H72N2O12 

 

Benzene 0078120000 C6H6 

 

Benzyl Penicillin 0334390602 C16H18N2O4S 

 

Caffeine 0194190300 C8H10N4O2 

 

Candoxatril 0515640702 C29H41NO7 

 

Carbamazepine 0236270101 C15H12N2O 

 

Sodium Hydroxide 0039990101 HNaO 
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Chloramphenicol 0323130503 C11H12Cl2N2O5 

 

Cimetidine 0252340403 C10H16N6S 

 

Clonidine 0230090102 C9H9Cl2N3 

 

Copper Sulfate 0159610400 CuO4S 

 

Cyclosporine 1202611205 C62H111N11O12 

 

Desipramine 0266380201 C18H22N2 

 

Dexamethasone 0392460603 C22H29FO5 
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Diazepam 0284740200 C16H13ClN2O 

 

Diclofenac 0296150302 C14H11Cl2NO2 

 

Diltiazem-HCl 0414520600 C22H26N2O4S 

 

Doxorubicin 0543521206 C27H29NO11 

 

Enalaprilat 0376450602 C20H28N2O5 
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Erythromycin 0733931405 C37H67NO13 

 

Ethylene Glycol 0062070202 C2H6O2 
 

Famotidine 0337450804 C8H15N7O2S3 

 

Felodipine 0384250501 C18H19Cl2NO4 

 

Ferric Chloride 0162200000 Cl3F 

 

Fluorouracil 0130080302 C4H3FN2O2 

 

Flurbiprofen 0244260301 C15H13FO2 

 

Formaldehyde 0030030100 CH2O 
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Furosemide 0330740703 C12H11ClN2O5S 

 

Gabapentin 0171240302 C9H17NO2 

 

Glycerol 0092090303 C3H8O3 

 

Hydrobromic Acid 0080910000 BrH 
 

Hydrochloric Acid 0036460001 HCl 
 

Hydrochlorothiazide 0297740703 C7H8ClN3O4S2 

 

Hydrofluoric Acid 0020010101 FH 
 

Ibuprofen 0206280201 C13H16O2 

 

Imipramine 0280410200 C19H24N2 

 

Isopropyl Alcohol 0060100101 C3H8O 
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Itraconazole 0705630900 C35H38Cl2N8O4 

 

Ketoconazole 0531430600 C26H28Cl2N4O4 

 

Ketoprofen 0254280301 C16H14O3 

 

Labetalol-HCl 0328410404 C19H24N2O3 

 

Lisinopril 0405490704 C21H31N3O5 

 

Magnesium Sulfate 0120370400 MgO4S 

 

Mannitol 0182170606 C6H14O6 
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Methotrexate 0454441205 C20H22N8O5 

 

Metoprolol 0267360402 C15H25NO3 

 

Nadolol 0309400504 C17H27NO4 

 

Naloxone 0327370502 C19H21NO4 

 

Naproxen-sodium 0230260301 C14H14O3 

 

Nortriptylene-HCl 0263380101 C19H21NO4 

 

Omeprazole 0345420601 C17H19N3O3S 
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Phenytoin 0252270202 C15H12N2O2 

 

Piroxicam 0331350702 C15H13N3O4S 

 

Potassium Bromide 0119000100 BrK 
 

Potassium 
Permanganate 0158030400 MnO4K 

 

Prazosin 0383410801 C19H21N5O4 

 

Propranolol-HCl 0259350302 C16H21NO2 

 

Quinidine 0324430401 
 

C20H24N2O2 
 

 

Ranitidine-HCl 0314410702 C13H22N4O3S 
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Silver Nitrate 0169870300 AgNO3 

 

Sodium Thiosulfate 0158110400 Na2O3S2 

 

Tenidap 0320760402 C14H9ClN2O3S 

 

Terfenadine 0471690302 C32H41NO2 

 

Testosterone 0288430201 C19H28O2 

 

Trovafloxacin 0416361002 C20H15F3N4O3 

 

Valproic-acid 0144220201 C8H16O2 
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Vinblastine 0810971203 C46H58N4o9 

 

Zinc Chloride 0136290000 ZnCl2 
 

Ziprasidone 0412940501 C21H21ClN4OS 
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Diseases 

Due to the large number of diseases present in the CTD, the diseases were 

combined into 27 groups based on the classifications used in the CTD.  Rather than 

associating each chemical with every associated disease, the chemicals were related to 

the disease group that contained the actual associated disease.  Each disease group was 

assigned a number, 1-27, to represent that disease group in the network.  Table 2 shows 

the 27 diseases groups used in the network and the disease identification number assigned 

to each group. 
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Table 2: Disease Groupings 
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Artificial Neural Network 

     Figure 2 shows an illustration of how the ANN operated for the MATLAB 

simulations.  The ANN took the input and output data for each chemical-disease 

association and used the training function in the hidden layer to update the weights and 

biases in an attempt to find patterns and correlations between the input and output data.  

Based on the pre-determined values in the TVT ratio, the ANN would select the 

designated amount of data to train the network with.  After training, the ANN would then 

validate the network with the designated amount of data, and finally test the network with 

the remaining data.  In Figure 2, the three output categories (species, dummy variable, 

and disease) within the ANN represent the actual disease outputs obtained from the CTD.  

The outputs on the outside of the ANN represent the outputs generated by the ANN 

during the testing phase of each simulation.  The code used in the network simulations 

can be found in Appendix A. 
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Figure 2: Artificial Neural Network Example 

Input and Output Data 

Before running the network simulations in MATLAB, the data were first 

formatted to fit the ANN requirements as defined by the MATLAB user guide.  The input 

and actual associated output data from the CTD were entered into two matrices created in 

Microsoft Excel from which MATLAB was coded to retrieve the data.  The input data 

were entered into a matrix with three columns, one each for molecular weight, hydrogen 

acceptors, and hydrogen donors.  These three chemical characteristics were left as 

individual data points for the input data, rather than being entered in one column as the 

new classification number, to keep the size of the input and output matrices the same and 

reduce the use of dummy variables.  The output data were entered into a matrix the same 

size as the input data matrix with columns for species, dummy variable, and disease 

group.  Species were given numbers, similar to the disease groups, and the species and 
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their assigned numbers can be found in Table 3.  The species number is specifically 

related to the species that the chemical-disease association occurs in.  For example, 

acetone has a curated relationship with neoplasms (disease category 15) and this 

chemical-disease association occurs in humans.  A dummy variable was used in the 

output matrix to keep the matrix the same size as the input data matrix.  Zeros were 

entered for the dummy column values and the dummy column was not used in any of the 

results analysis. 

Table 3: Species Table 

 

The number of rows used for each chemical was determined by the number of 

disease groups the chemical was associated with.  For example, acetone was associated 

with six diseases groups so it used six rows in both the input and output matrices.  The 

actual input and output data used for acetone can be seen in Table 4.  The six rows used 

in the input matrix all contained the same molecular weight, hydrogen acceptor, and 

hydrogen donor data.  Each of the six rows in the output matrix corresponded to one of 

the associated disease groups and subsequent related species.  The complete input and 

output matrices can be found in Appendix B. 
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Table 4: Acetone Input and Output Matrices 

Inputs  Outputs 
Molecular 

Weight 
Hydrogen 
Acceptors 

Hydrogen 
Donors   Species Dummy 

Disease 
Group 

58.08 1 1  1 0 9 
58.08 1 1  1 0 12 
58.08 1 1  1 0 15 
58.08 1 1  1 0 16 
58.08 1 1  1 0 17 
58.08 1 1   1 0 25 

Simulations 

Three phases of simulations were used to test the ANN.  The first phase of 

simulation was accomplished to demonstrate that the MATLAB ANN could be used to 

analyze the chemical and disease data and find appropriate correlations.  Initially, 20 

chemicals were chosen from the CTD and the input and output matrices were created 

based on the chemical characteristics and associated species and diseases groups.  This 

simulation used the basic MATLAB ANN code formatted with a TVT ratio of 80-10-10 

percent and the default training function.  Results from the first phase simulation can be 

found in Figures 3-9 in Chapter 4. 

The second phase of simulations involved testing different TVT ratios and 

training functions on the network which provided the best network performance.  To do 

this, an additional 55 chemicals were chosen at random from the CTD and the 

appropriate chemical, species, and disease group data were added to the input and output 

matrices.   First, five different TVT ratios were tested in the network using the default 

training function: 50-25-25, 60-20-20, 70-15-15, 80-10-10, and 90-5-5 percent.  These 
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five ratios were chosen so that an appropriate TVT ratio could be chosen while also 

highlighting how the different ratios affect the ANN.  Next, each of the 15 training 

functions was tested in the network using the 70-15-15 percent TVT ratio.  The 

MATLAB training functions used are preprogrammed functions built within MATLAB.  

All of the functions operated in a feedforward network with backpropagation.  A feed 

forward network is where the data is passed through the hidden layer in a single direction 

from the input side to the output side.  The backpropagation step involves going back to 

adjust the weights and biases in the hidden layer after comparing the actual outputs to the 

ANN derived outputs.  Each of the training functions are based off of a gradient descent 

algorithm where the training function attempts to decrease the error in the network by 

adjusting the weights and biases after each network iteration.  The results from the 

different training ratios indicated that the trainlm, Levenberg-Marquardt 

backpropagation, function generated the best network performance. 

The third phase of simulations involved inputting uncurated chemical data into 

the network that had no known disease associations to see what diseases the network 

would predict.  To accomplish this, a network simulation was first run with the original 

75 chemicals using the 70-15-15 percent TVT ratio and trainlm training function.  The 

70-15-15 percent TV ratio and trainlm training function provided the best network 

performance in the second phase of simulations.  This established the correlations, 

weights, and biases for the network to use on the uncurated chemicals.  Then the data for 

three uncurated chemicals were run through the network 10 times and the network-

derived disease output results for each trial were recorded.  Each uncurated chemical was 
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input into the network 10 times to allow multiple disease association predictions to occur 

in the event that a chemical was associated to more than one disease.  The network 

outputs generated had to be rounded to directly correlate them to the whole number 

designators assigned to each disease group.  Several network outputs produced the same 

disease group more than once for a given input chemical.  For duplicate disease 

predictions, these outputs were consolidated into one output.  The derived disease outputs 

were then compared to research literature to see if the network predictions were correct.       

Analysis and Results 

Once the simulations were complete in MATLAB, all of the output data was 

copied into Microsoft Excel for analysis.  Analyzing the first phase of simulations was 

done simply by reviewing the output plots and figures generated by MATLAB at the 

completion of the simulation.  The analyses of the phase two simulations used Microsoft 

Excel to plot and chart the output data from MATLAB.  The primary graph used plotted 

the actual diseases values versus the ANN derived disease values.  When the network 

produced accurate output results, the plot would follow a linear, one-to-one slope on the 

graph.  Excel was also used to calculate the coefficient of determination (R2) values to 

see how well the data followed a linear progression.  The analysis also compared the 

different TVT ratios and training functions based on network parameter values to 

determine which ratio or function provided the best network performance.  Additionally, 

the effects of undertraining and overtraining the network on ANN derived disease values 

were taken into account.  The third phase of simulations was primarily analyzed by 
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comparing the ANN derived disease values to research literature in an effort to show that 

the network had some predictive capability for uncurated chemicals. 
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V. Analysis and Results 

ANN Training Results 

The following figures were generated from a typical MATLAB ANN simulation 

using the default training settings and a TVT ratio of 80-10-10 percent.  They show 

typical results seen during the first phase of simulations when the initial group on 20 

chemicals was used in the ANN. 

Figure 3 shows a typical MATLAB training session for an ANN. The neural 

network diagram shows a pictorial of how the network will function, given the 

requirements established in the network code. At the top of the figure, the diagrams 

shows the number of inputs and outputs being used and the number of hidden layers. The 

data division and derivative algorithms are preset within MATLAB and these default 

settings were used for the various simulations. The training algorithm defines the training 

function used in the network, which dictates how the data will be trained.  The 

performance algorithm measures how well the network is operating during training. The 

training and performance algorithms can be changed separately; however, a default 

performance algorithm will be chosen based on the training algorithm if a specific 

performance algorithm is not defined.  
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Figure 3: Typical MATLAB ANN Training Session 
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The progress portion of Figure 3 shows the network performance criteria that 

provide information on the progress of network training. As the simulation progresses, 

these performance criteria update to show the current status of the training. The epochs 

show the number of iterations over the course of the simulation. Performance shows how 

accurately the network is generating output values compared to the actual output values. 

The performance values are the mean-squared error of the network so lower performance 

values indicate higher network training performance. The gradient is an optimization 

algorithm that measures the adjustments made to the network in relation to the network 

performance during each epoch. If a network is performing well, smaller adjustments are 

needed so the gradient will be smaller. Likewise, if a network is performing poorly, 

larger adjustments are needed to attempt to improve performance so the gradient will be 

larger. The mu value shows how much the network is required to change the weights and 

biases placed on the input data to achieve accurate output results. The weights and biases 

are used to adjust and determine how the input data is used when training the network. If 

the network finds some input data provides better performance than other data, it will 

place more weight on the data that increases performance. When a network has high mu 

values during training, the network is struggling to find weight and bias values that work 

for the data set. The validation checks show the number of iterations where the 

simulation’s validation performance does not decrease. After the network is trained, it is 

validated to ensure the training was successful.  

All of these performance criteria have upper and lower boundaries and when the 

appropriate boundary of one of the criteria is reached, the simulation is terminated. 
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Performance and gradient will both terminate the simulation when they reach their lower 

limit values. If performance or gradient terminate the simulation, this generally indicates 

a successful training because lower performance and gradient values correlate to higher 

network performance. Epochs, mu and validation checks will terminate the simulation 

when they reach their upper limits. When the number of epochs terminates the 

simulation, the network has used all of the allotted iterations before the performance or 

gradient have reached an acceptable level. Network termination due to a high mu value 

indicates that the network failed to find appropriate weight and bias values. Terminating 

for a high number of validation checks indicates the network did not train well because it 

was unable to be validated. Time is the only criterion that does not terminate a simulation 

as it is simply meant to track how long the simulation takes. Once the network training is 

complete, there are several figures that MATLAB can create which provide additional 

information about the network simulation.  Figures 4-9 show the different plots that can 

be generated by MATLAB after the network simulations.  Additional training sessions 

and supporting figures can be found in Appendix C. 

Figure 4 shows a typical MATLAB-generated plot of the actual disease numbers 

plotted against the ANN derived disease. When the plot shows a straight, positive, one to 

one slope, the ANN derived disease number is close to the actual disease number. The 

straight, one to one slope seen in the figure suggests that the network was able to 

correctly derive the appropriate disease number for each chemical.  
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Figure 4: Typical MATLAB Actual Disease versus ANN Derived Disease Outputs 
Plot 

Figures 5 and 6 show the performance (i.e. mean squared error) of the ANN 

simulation discussed from Figure 3. The two plots look identical because the network 

used the mean squared error to judge the performance of the network as it was trained. 

The lower the performance value, or mean squared error value, the better the network is 

performing because they is less variation between the actual disease groups numbers and 

the ANN derived disease group numbers. The figures show the performance of the 

network for each epoch during the simulation. During the simulation, the training 
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performance decreases until epoch 11 where the performance values plateau.  In Figure 5, 

the validation and test curves follow the same path as the train performance curve.  

 

 

Figure 5: Typical MATLAB ANN Performance Plot 
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Figure 6: Typical MATLAB ANN Mean Squared Error Plot 

Figure 7 shows a typical regression plot produced from an ANN network 

simulation. Similar to Figure 4, a positive, straight, one to one slope is desired to show 

that the ANN derived disease numbers match the actual disease numbers. In this plot, the 

target, x-axis, values represent the actual disease numbers and the output, y-axis, values 

represent the ANN derived disease numbers. The training R-value shows how closely the 

derived numbers compare to the actual numbers. An R-value of one would indicate a 

perfect match of the derived to the actual disease number so the higher the R-value, the 
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more accurate the Ann derived disease numbers are. The high R-value of 0.9985 for this 

simulation corresponds to the straight, one to one slope seen in the graph. 

 

Figure 7: Typical MATLAB ANN Regression Plot 

Figure 8 shows how the gradient, mu, and number of validation checks values 

fluctuation during the course of the network simulation. The decreasing gradient and mu 
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values both indicate the network was performing well. The validation checks remaining 

at zero also indicated that the network training was performing well. In this simulation, 

from Figure 3, the gradient parameter was the termination factor because it reached its 

lower limit. 

 

Figure 8: Typical MATLAB ANN Training States 

Figure 9 shows how the gradient, mu, and number of validation checks values 

fluctuation during the course of the network simulation. The decreasing gradient and mu 

values both indicate the network was performing well. The validation checks remaining 
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at zero also indicated that the network training was performing well. In this simulation, 

from Figure 3, the gradient parameter was the termination factor because it reached its 

lower limit. 

 

 

Figure 9: Typical MATLAB ANN Error Histogram Plot 

After the ANN was shown to be capable of fitting chemical and disease input and 

output data in the model.  The TVT ratios and training functions were tested in the 
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second phase of simulations.  Using the TVT ratio as an independent variable yields a 

wide range of training performance parameter values.  Table 5 shows the effects that 

different TVT ratios can have on the network performance criteria.  From the data 

collected, the 70-15-15 TVT ratio provided the best overall performance for the training 

of the network.  The higher average number of epochs associated with the 70-15-15 TVT 

ratio shows that this ratio allowed the network more opportunity to improve with more 

simulation iterations than the other ratios.  While the 60-20-20 TV ratio had a lower 

average performance value, it had a higher average mu value and a higher average 

number of validation checks indicating that the 60-20-20 ratio did not adequately 

establish proper weight values and could not continue to improve performance of the 

network.  Although the 70-15-15 TVT ratio had the highest average gradient value, it had 

the lowest average mu and lowest number of validation checks of the five TVT ratios.  

Table 5 shows that over the five network training criteria, the 70-15-15 TVT ratio 

provides the best overall performance with that data. 
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Table 5: The Effect of TVT Ratio on Network Training Statistics 

Ratio 
  

Network Training Parameters 

Epochs Time Performance Gradient Mu 
Validation 

Checks 

50-25-25 
Minimum 3 37.75 3.929 1.174 2.00E-07 1 
Maximum 8 208.05 92.510 642.100 2.00E+04 6 
Average 4.4 90.07 37.277 192.282 2.91E+03 3 

60-20-20 
Minimum 4 69.48 0.380 0.213 6.02E-06 4 
Maximum 12 219.66 96.450 993.201 2.40E+05 6 
Average 7.8 146.72 20.792 310.266 6.92E+04 5.2 

70-15-15 
Minimum 10 154.85 0.177 0.000 8.20E-07 0 
Maximum 14 256.19 90.037 2326.863 2.40E+02 0 
Average 11.6 195.68 24.871 422.535 2.00E+01 0 

80-10-10 
Minimum 6 92.27 16.926 0.000 6.00E-04 0 
Maximum 19 276.79 95.657 810.218 2.01E+04 0 
Average 9.8 150.64 46.503 172.010 2.12E+03 0 

90-5-5 
Minimum 2 32.45 0.000 0.001 4.02E-04 0 
Maximum 9 192.81 94.892 512.904 2.20E+05 6 
Average 4.4 101.67 42.661 120.958 4.69E+03 3.4 

 
 

Figure 10 shows the R2-values for the five different TVT ratios used in network 

simulations. The 70-15-15 percent ratio clearly provides the best fit for the data with a 

high R-value of nearly one. The 80-10-10 percent ratio also performs well but has a lower 

R2-value than the 70-15-15 percent ratio. The other ratios have low R2-values and the 

plots of the ANN derived disease numbers versus actual disease numbers show the 

inaccuracy of those models. Individual plots for each of the TVT ratios used can be found 

in Appendix D. 
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Figure 10: TVT Ratio Effect on the Coefficient of Determination 

In addition to TVT ratios, altering the training functions used to train the network 

can also affect network performance. Table 6 shows the effects that different training 

functions have on the network performance criteria. When conducting simulations with 

the different training functions, the 70-15-15 TV ratio was used to organize the data as it 

was determined to provide the best performance with the network. Explanations for all of 

the training functions used can be found in Appendix E.  From the data collected in the 

simulations, the trainlm provided the best overall training performance for the 

simulations. Because not all of the training functions used gradient, mu or validations 

checks as performance parameters, epochs, time and performance were the main 
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parameters used to compare the different functions. The maximum number of epochs was 

used to terminate the simulations for 10 of the 15 training functions used in the network.  

While the trainlm training function did not have the lowest performance value, its 

simulations were terminated due to the gradient reaching the lower limit indicating high 

network performance. Training function traingscg had a lower performance parameter 

but also had a lower R-value when the actual and ANN derived disease numbers were 

plotted.  It should also be noted that training functions with shorter network run times 

generally performed worse than functions with longer run times.  
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Table 6: The Effects of Training Functions on Network Training Statistics 

Function   Performance Parameters 
  Epochs Time Performance Gradient Mu Validation Checks 

trainb 
Minimum 1000 32.94 85.55 - - 0 
Maximum 1000 47.24 102.43 - - 0 
Average 1000 38.27 93.48 - - 0 

trainc 
Minimum 1000 47.95 65.06 - - - 
Maximum 1000 306.49 101.05 - - - 
Average 1000 214.66 79.73 - - - 

traincgb 
Minimum 3 0.18 64.27 2.68 - 0 
Maximum 13 0.22 88.41 416.71 - 0 
Average 9 0.20 71.86 260.10 - 0 

traincgf 
Minimum 101 0.75 40.37 1.07 - 0 
Maximum 659 4.90 88.26 457.27 - 0 
Average 290 2.17 47.37 72.29 - 0 

traincgp 
Minimum 5 0.26 55.00 1.68 - 0 
Maximum 161 1.62 89.20 361.27 - 0 
Average 88 0.94 59.85 38.10 - 0 

traingd 
Minimum 1000 2.85 48.12 0.93 - 0 
Maximum 1000 2.86 100.66 229.21 - 0 
Average 1000 2.86 61.70 2.30 - 0 

traingda 
Minimum 1000 2.99 68.21 195.53 - 0 
Maximum 1000 3.30 146.91 408.98 - 0 
Average 1000 3.18 73.10 329.39 - 0 

traingdm 
Minimum 1000 3.11 48.10 0.94 - 0 
Maximum 1000 3.56 104.42 576.00 - 0 
Average 1000 3.27 84.38 2.55 - 0 

traindgx 
Minimum 1000 3.25 78.80 3.17 - 0 
Maximum 1000 3.27 95.30 602.00 - 0 
Average 1000 3.59 80.53 133.58 - 0 

trainlm 
Minimum 10 154.85 0.18 0.00 0.00 0 
Maximum 14 256.19 91.97 2143.91 400.00 0 
Average 13 219.36 27.91 394.93 33.25 0 

trainoss 
Minimum 1000 6.35 0.34 0.00 - 0 
Maximum 1000 10.19 99.07 550.00 - 0 
Average 1000 7.65 36.37 2.49 - 0 

trainr 
Minimum 1000 52.66 64.00 - - - 
Maximum 1000 87.99 101.85 - - - 
Average 1000 64.48 79.43 - - - 

trainrp 
Minimum 45 0.27 42.00 0.00 - 0 
Maximum 49 0.35 99.69 524.00 - 0 
Average 47 0.31 47.37 5.53 - 0 

trains 
Minimum 1000 21.25 83.90 - - - 
Maximum 1000 25.84 100.76 - - - 
Average 1000 23.35 91.88 - - - 

trainscg 
Minimum 1000 4.60 0.44 0.12 - 0 
Maximum 1000 7.86 95.46 545.60 - 0 
Average 1000 5.87 25.54 9.57 - 0 
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Figure 11 shows the R2-values for each of the training functions used in the 

network simulations. Several of the training functions had good R2-values, above 0.7, but 

the majority fell around or below 0.5 indicating most training functions did not have a 

good fit with the data. The Trainlm function had the highest R2-value of 0.999.  Trainrp 

also had an R2-value of 0.999 but the slope of the line 0.5:1, not 1:1.  Trainscg had the 

second highest R-value of 0.9769 but the ANN derived disease number versus actual 

disease number plot was not as linear as Trainlm. Plots for all of the training functions 

can be found in the Appendix. 

 
 

Figure 11: Training Function Effect on the Coefficient of Determination 
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ANN Model Performance for Curated Chemicals 

Utilizing curated chemicals from the CTD allowed various network models to be 

created testing different TVT ratios. The actual disease number is known when using 

curated chemicals so the ANN derived disease numbers can easily be compared to the 

actual values to determine how well the network is performing. 

 Effect of Training Ratio on Model-Predicted Disease 

Figure 12 shows typical actual disease number versus ANN derived disease 

number plots for each of the five TVT ratios used. For the simulations shown, default 

training functions and parameters were used in the network. The graph also includes a 

one-to-one slope line to easily compare the different simulations results to the desired 

values. As discussed earlier, the 70-15-15 percent TVT ratio generated the best network 

performance. Comparing the different TVT ratio plots, it is evident that the other ratios 

do not produce the same performance as the 70-15-15 percent ratio and are unable to 

accurately generate ANN derived disease numbers.
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Figure 12 also highlights three structurally different chemicals used in the 

network simulations showing how their ANN derived disease numbers compare to their 

actual disease numbers when using the 70-15-15 percent TVT ratio.  Two important 

details about the network can be seen when examining the three highlighted chemicals.  

First, the network is able to take inputs from different chemicals and correctly match it to 

a single disease category.  Potassium permanganate and ethylene glycol can both be 

correctly linked to disease group five and ethylene glycol and candoxatril can both be 

correctly linked to disease category 16.  In addition to matching multiple chemicals to 

one disease category, the network also correctly took inputs from a single chemical and 

linked it to multiple diseases that it is related to.  Both ethylene glycol and candoxatril are 

shown to correctly have associations with multiple disease categories.    

Chemical Trends for Undertrained Model Simulations 

Figure 13 shows the effects of using an undertrained network on the ANN derived 

disease number using the average of five trials of simulation data.  Nearly all of the ANN 

derived disease numbers fall below the one to one slope line which correlates to the low 

R2-value seen in Figure 4.8.  For every disease associated with each of the three 

chemicals, the ANN derived disease number was lower than the actual value. The 

network was unable to derive the same disease number for multiple chemicals that were 

linked to the same disease. When the network did not have enough data available to 

properly train with, the performance of the network suffered and produced inaccurate 

results.
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Figure 13 also shows the three chemicals highlighted in Figure 12 to display how 

the network derives disease numbers for them when not provided with enough training 

data.  When examining the three chemical’s ANN derived disease numbers, it is evident 

that the undertrained network is not able to predict the correct values.  When more than 

one chemical is linked to the same disease, the network is unable to predict the same 

disease for the multiple chemicals.  Potassium permanganate and ethylene glycol should 

both be related to disease category 5 but the network predicts values near 3.5 and 1.5 

respectively.  Not providing enough data for the network to train with negatively affects 

the overall performance of the network. 

Occasionally, less than 0.5% of the time, the network will generate a disease 

value close to the actual value, but this does not occur on a consistent basis.  It is also not 

consistent for a certain chemical or disease.  For example, in one simulation, the network 

generated a disease number of 14.2692 for formaldehyde.  Formaldehyde is related to 

disease category 15 (neoplasms) so this is a difference of 4.9%.  Formaldehyde is also 

related to 23 other disease groups and the closest network generated disease number out 

of the remaining 23 was 25.6% off the actual number.  Out of the five simulations run 

with the network, this was also the only time a number within 5% of 15 was generated for 

formaldehyde.  
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Chemical Trends for Overtrained Model Simulations 

Figure 14 shows the effects of using an overtrained network on the ANN derived 

disease number.  The results shown in Figure 14were obtained using a TVT ratio of 90-5-

5 percent and the default network training settings.  Similar to the results seen in Figure 

13, the network was unable to generated correct disease numbers and nearly all of the 

generated values fell below the one to one slope line.  The overtrained network saw 

similar failures when choosing disease number for multiple chemicals associated with 

one disease.  Potassium permanganate and ethylene glycol should have had a disease 

number of five generated by the network, but instead values of 2.75 and 1.75 were 

generated for the two chemicals, respectively.    
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ANN Model Performance for Uncurated Chemicals 

  Three uncurated chemicals from the CTD were selected to be tested by the ANN 

using a 70-15-15 TVT ratio and the trainlm training function.  While these chemicals 

were uncurated in the database, there is research to suggest that they are related to certain 

diseases.  Testing the network with these chemicals gives the ability to determine how 

well the model can predict chemical-disease associations. 

Figure 15 shows the network results when the uncurated chemical cystaphos was 

input into the network. From the 10 inputs, the network generated seven possible disease 

output numbers.  Of the seven predicted outputs, neoplasm was generated by the network 

and had literature from previous research to support this network prediction. For 

example, the Defense Threat Reduction Agency (DTRA) in 2006 conducted a review of 

previous Soviet Union research involving biological actions of neutron radiobiology. 

DTRA discovered several trials where animals were injected with cystaphos or cystaphos 

mixed with other chemicals. These trials included results that showed cystaphos was 

capable of protecting the intestinal system in mice from unwanted radiation damage 

(Defense Threat Reduction Agency, 2006).  In addition to the DTRA report, Barkaia et 

al. conducted research in 1989 involving cystaphos as an adjuvant in cancer treatment. 

Using mice, guinea pigs, monkeys, they injected the animals with cystaphos combined 

with sodium nitrite and mexamine after irradiating them with Cs-137 gamma rays. 

Barkaia et al. then monitored the radiation sickness exhibited by the animals and repeated 

the cystaphos solution injections to see if the radiation sickness lessened. From their 

experiments, they found that with repeated injections, the cystaphos solution helped to 
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protect healthy cells in the bone marrow, spleen, and intestine of the test animals (Barkaia 

et al., 1989).  The findings of Barkaia et al. mimic those mentioned in the DTRA report 

in that cystaphos appears to reduce the harmful effects of radiation and protect the 

intestinal system in mice. The results presented from these two studies support the 

network model prediction that cystaphos is linked to neoplasms.  This identified potential 

link does not indicate that cystaphos causes cancer, but rather it is connected to it in ways 

that are not fully understood.  The peer-reviewed literature does not contain studies that 

have examined the connection between cystaphos and any of the other predicted diseases. 

 
 

Figure 15: MATLAB ANN Derived Diseases for NCC Cystaphos 

Figure 16 shows the network results when the uncurated chemical 3,5-dibromo-2-

(2,4-dibromophenoxy)phenol (6-HO-BDE-47) was input into the network. From the 10 

inputs, the network generated nine possible disease output numbers with nervous system 

diseases being supported by previous research. Hendriks et al., 2010 studied the use of 

polybrominated diphenyl ethers (PDE) to stimulate nicotinic acetylcholine (nACh) and 

GABA(A) receptors on neurons in the brain.  Hendriks et al. took several PDEs, 

including 6-HO-BDE-47, and conducted tests investigating their affects on the nACH and 
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GABA(A) receptors. Their findings documented that 6-HO-BDE-47 was an antagonist to 

the nACH receptors yet acted as an agonist to GABA(A) receptors. The results showing 

that 6-HO-BDE-47 can be linked to nervous systems diseases from the work of Hendriks 

et al. supports the same prediction generated by the ANN model.  In addition to being 

related to nervous system diseases, there is also literature to support a possible connection 

to endocrine diseases. The network model did not predict endocrine diseases but an 

investigation conducted by Cao et al., 2010 indicates that this may be a possibility. Cao et 

al. took PDEs that were known to cause thyroid hormone disruption and tested to see if 

they bind to hormone transport proteins. Their results showed that 6-OH-PDE-47 had an 

affinity to binding with the thyroid hormone transport protein which could cause 

endocrine system problems.  Although the network predictions parallel the findings of 

Hendriks et al. and Cao et al., the model is only able to potentially link 6-OH-PDE-47 to 

nervous system and endocrine system diseases.  It does not indicated that 6-OH-PDE-47 

directly causes these diseases.  The peer-reviewed literature does not contain studies that 

have examined the connection between 6-HO-PDE-47 and any of the other predicted 

diseases. 
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Figure 16: MATLAB ANN Derived Diseases for NCC 6-HO-BDE-47 

Figure 17 shows the network results when the uncurated chemical 4,4’-

diiodobiphenyl (DIB) was input into the network. Seven output predictions were 

generated from the 10 inputs and endocrine system diseases had literature so support the 

network’s prediction. Yomada-Okabe et al., 2005 published research findings suggesting 

DIB affected thyroid hormone receptors by inhibiting gene expression. From their work, 

Yomada-Okabe et al. concluded that DIB affects the luciferase gene by enhancing the 

expression of it. Mediation of the luciferasse gene has been documented to act as an 

endocrine disruptor in animals and humans. This relationship indicates that DIB could be 

a potential source of endocrine disease as predicted by the model.  The peer-reviewed 

literature does not contain studies that have examined the connection between DIB and 

any of the other predicted diseases. 
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Figure 17: MATLAB ANN Derived Diseases for NCC 4,4'-diiodobiphenyl 
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VI. Conclusions and Recommendations 

Research Conclusions 

The conclusions from this research are as follows:  

1) A new chemical classification system was created to identify chemicals with a 

unique number based on structural characteristics of the chemical.  This new 

system facilitates the analysis of relationships between chemicals and 

diseases.  While the use of molecular weight, hydrogen acceptors, and 

hydrogen donors proved sufficient for creating the classification system that is 

able to be used in a predictive ANN, the ANN model results do not prove that 

these three variables provide the best performance results for predicting 

chemical-disease associations.  Other chemical characteristics may provide 

equal or better results.   

2) Artificial neural networks were successfully employed to associated chemicals 

and diseases. Initial simulations with TVT ratios of 80-10-10 percent 

produced coefficients of determination equal to 0.99. The ANN derived 

diseases were predicted using inputs that were formatted according to the new 

chemical classification system. 

3) The TVT ratio of 70-15-15 percent provided the best network performance 

when compared to other TVT ratios.  When compared to the other ratios 

tested in the network, the 70-15-15 percent TVT had the lowest performance 

values, or lowest error values, for ratios that produced network with zero 
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validation checks.  The lack of validation checks shows that the ANN was 

able to properly train the data.  Additionally, the 70-15-15 percent ratio had 

the highest R2 value (0.99) of the TVT ratios indicating it has a greater 

likelihood of accurately predicting disease output values.   

4)  The trainlm (Levenberg-Marquardt backpropagation) function provided the 

best network performance. The trainlm function had an R2-value of 0.99 and a 

one-to-one slope on the actual disease number versus ANN derived disease 

number plot. The trainrp and trainscg functions also produce good results with 

R2-values of 0.99 and 0.976 respectively; however, the trainrp function results 

did not follow a one-to-one linear slope and the trainscg function did not 

produce linear results.  The high R2 value indicates that the trainlm function 

has a greater chance of correctly predicting disease output values. 

5)  The ANN has potential to predict chemical-disease associations that are not 

yet curated.  Cystaphos was correlated to neoplasms and two independent 

literature sources supported the ANN prediction.  The ANN predicted that 

3,5-dibromo-2-(2,4-dibromophenoxy)phenol (6-HO-BDE-47) was associated 

with nervous system diseases and a research documentation supported this 

finding.  A separate literature source concluded that 6-HO-BDE-47 was also 

linked to endocrine diseases but the ANN failed to make that connection.  

4,4’-diiodobiphenyl (DIB) was correctly matched to endocrine disease and 

supported by an independent research report.  The ANN has demonstrated the 

potential to predict disease-associations for new chemicals and to guide 

research for existing chemicals that require toxicological testing.   
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Recommendations for Future Research 

Future research should carry out the following activities: 

1) Laboratory testing of chemical-disease associations that are predicted by the 

ANN model presented in this thesis, followed by possible refinements or 

modifications to the new chemical classification system. This should be 

carried out for both curated and uncurated chemicals.  One possibility would 

be to analyze chemicals that were grandfathered into the Toxic Substances 

Control Act inventory whose chemical-disease associations are unknown.  

2) Developing an ANN that correlates chemical-gene expression associations in 

order to develop a tool that provides insight into the mechanisms that cause 

(or prevent) disease. 

3) Testing of additional factors in the ANN to produce a more accurate model for 

correlating chemicals, genes, and diseases.  Utilized a loop function to 

iteratively step through every possible TVT ratio combination may discover a 

more optimal ratio to use in the network.  Additionally, testing transfer 

functions within the ANN hidden layer or adding additional hidden layers has 

the potential to show increased network predictive performance as well.
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Appendix A: MATLAB ANN Code 

1 % This code is used for the thesis work conducted by Capt Brouch 
2 % This code relates chemical input data to species and disease output data 
3 % This code is based on the sample input-output fitting network in the MATLAB ANN Guide 
4 % The script was last revised on 22 Jan 2014 by Capt Brouch 
5 % The format for the input matrix is: ['Molecular Weight' 'Hydrogen Acceptors' 'Hydrogen Donors'] 
6 % The format for the output matrix is: ['Species' 'Dummy Variable' 'Disease'] 
7 % The format for the input1 matrix is: ['Molecular Weight' 'Hydrogen Acceptors' 'Hydrogen Donors'] 
8 % The input1 matrix contains uncurated chemical data used to predict disease outputs 
9 
10- tstart = clock; 
11 
12- A = zeros(1173,3); 
13- B = zeros(1173,3); 
14- C = zeros(1173,3); 
15 
16- A(:,1) = xlsread('J:\Brouch\Brouch Thesis\Excel Files\Brouch Thesis ANN Data.xls','Input-Output Tables','b2:b1174'); 
17- A(:,2) = xlsread('J:\Brouch\Brouch Thesis\Excel Files\Brouch Thesis ANN Data.xls','Input-Output Tables','c2:c1174'); 
18- A(:,3) = xlsread('J:\Brouch\Brouch Thesis\Excel Files\Brouch Thesis ANN Data.xls','Input-Output Tables','d2:d1174'); 
19- B(:,1) = xlsread('J:\Brouch\Brouch Thesis\Excel Files\Brouch Thesis ANN Data.xls','Input-Output Tables','e2:e1174'); 
20- B(:,3) = xlsread('J:\Brouch\Brouch Thesis\Excel Files\Brouch Thesis ANN Data.xls','Input-Output Tables','g2:g1174'); 
21- C(:,1) = xlsread('J:\Brouch\Brouch Thesis\Excel Files\Brouch Thesis ANN Data.xls','Uncurated','c3:c1175'); 
22- C(:,2) = xlsread('J:\Brouch\Brouch Thesis\Excel Files\Brouch Thesis ANN Data.xls','Uncurated','d3:d1175'); 
23- C(:,3) = xlsread('J:\Brouch\Brouch Thesis\Excel Files\Brouch Thesis ANN Data.xls','Uncurated','e3:e1175'); 
24 
25- inputs = A; 
26- targets = B; 
27- inputs1 = C; 
28- % the targets matrix is the same as the output matrix 
29 
30 % preallocate the plotting matrix (PM) 
31- PM = zeros(1173,5); 
32 
33 % the variable is interest is vv - this is the column number in the target matrix 
34- vv = 3; 
35 
36- countt = 1; 
37 
38- for count = 1:1:5 
39 % Create a Fitting Network 
40- hiddenLayerSize = 1; 
41- net = fitnet(hiddenLayerSize); 
42 % Set up Division of Data for Training, Validation, Testing 
43- net.divideParam.trainRatio = 70/100; 
44- net.divideParam.valRatio = 15/100; 
45- net.divideParam.testRatio = 15/100; 
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46 % Train the Network 
47- [net,tr] = trainlm(net,inputs,targets); 
48 % Test the Network 
49- outputs = net(inputs); 
50- errors = gsubtract(outputs,targets); 
51- performance = perform(net,targets,outputs); 
52 % View the Network 
53 % view(net) 
54 % plotperf(tr) 
55 
56- Outputs = net(inputs); 
57 % trOut = Outputs(tr.trainInd); 
58 % vOut = Outputs(tr.valInd); 
59 % tsOut = Outputs(tr.testInd); 
60 % trTarg = Outputs(tr.trainInd); 
61 % vTarg = targets(tr.valInd); 
62 % tsTarg = targets(tr.testInd); 
63 % figure (98) 
64 % plotregression(trTarg,trOut,'Train',vTarg,vOut,'Validation',tsTarg,tsOut,'Testing'); 
65 
66- PM(:,countt) = Outputs(:,vv); 
67- countt = countt +1; 
68- end 
69 
70- figure(1) 
71 %plot(targets(:,vv),PM(:,1),'ro') 
72 %plot(targets(:,vv),PM(:,1),'ro',targets(:,vv),PM(:,2),'go',targets(:,vv),PM(:,3),'ko', targets(:,vv),PM(:,4),'m--', 
 targets(:,vv),PM(:,5),'k-.') 
73- title('The relationship between actual and predicted diseases, version 1') 
74- xlabel('Actual Disease Number') 
75- ylabel('ANN-Derived Disease Number') 
76 
77- tstop = clock; 
78- runtime = etime (tstop,tstart)/60; 
79- disp('length of run in minutes:') 
80- disp(runtime) 
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This MATLAB code was used to set up and run the various ANN simulations 

discussed in the paper.  The first eight lines of code explain what the code provide some 

background information about what the code is being used for and how the input and 

output data is organized.  Line 10 begins a clock to track how long the ANN simulations 

take to complete.  Lines 12-14 create matrices for the input and output data obtain from 

Microsoft Excel spreadsheets.  Lines 15-22 dictate where MATLAB fill find the data 

needed for the input and output matrices.  Lines 16-18 and 19-20 state the data needed for 

the input and output matrices, respectively.  Lines 21-23 identify the uncurated chemical 

data used to generate the ANN derived disease predictions.  Lines 25-27 define the input, 

output, and output1 matrices created in lines 12-14.  Line 31 creates the plotting matrix 

where the ANN derive diseases values will be saved.  In this code, the matrix is created 

with five columns so the five simulations can be run back to back.  Line 34 designates the 

variable of interest to be saved in the plotting matrix.  For this code, the variable of the 

interest is the third column in the target matrix: disease.  Lines 38-68 control and run the 

actual ANN.  Line 38 establishes how many simulations the network will run.  For this 

code, 5 simulations are run to match the number of columns in the plotting matrix.  Line 

40 controls the number of hidden layers the network used.  Lines 43-45 control how the 

network splits up the data according to the TVT ratio being used in the simulation.  Line 

47 designates the training function being used in the network.  Line 56 establishes what 

input data the network will use to generate the ANN derive disease outputs.  Lines 66-68 

tell the network to stop running simulations when it reaches the predetermined maximum 

number established in line 38.  Lines 70-75 generate the actual disease number versus 

ANN derived disease number plot once the network simulations are complete.  Lines 77-
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80 stop the clock that was started in line 10 and records the total time in took the network 

to run all of the simulations. 

For the simulations testing the different TVT ratios and training functions, only 

lines 16-20 were used to obtain the input and output data.  The input data for uncurated 

chemicals was not used in these simulations.  When adjusting the TVT ratios and training 

functions, lines 43-45 and 47 were the only lines of code that required editing. 

When the uncurated chemical data was used to generate disease value predictions, 

the code was first run using the original input and output to establish the network using 

the curate data.  Then the command “outputs=net(inputs1)” was entered into the 

MATLAB command window.  This told the network to use the new inputs containing the 

uncurated to derive disease value predicts.
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Appendix B: Input and Output Matrices 

Chemical Molecular 
Weight 

Hydrogen 
Acceptors 

Hydrogen 
Donors 

Species 
Number 

Dummy Variable 
Column 

Disease 
Number 

Acetone 

58.08 1 1 1 0 9 
58.08 1 1 1 0 12 
58.08 1 1 1 0 15 
58.08 1 1 1 0 16 
58.08 1 1 1 0 17 
58.08 1 1 1 0 25 

Aciclovir 

225.21 8 4 1 0 2 
225.21 8 4 1 0 3 
225.21 8 4 1 0 4 
225.21 8 4 1 0 5 
225.21 8 4 1 0 8 
225.21 8 4 1 0 9 
225.21 8 4 1 0 11 
225.21 8 4 1 0 12 
225.21 8 4 1 0 13 
225.21 8 4 1 0 15 
225.21 8 4 1 0 16 
225.21 8 4 1 0 17 
225.21 8 4 1 0 19 
225.21 8 4 1 0 20 
225.21 8 4 1 0 21 
225.21 8 4 1 0 23 
225.21 8 4 1 0 24 
225.21 8 4 1 0 25 
225.21 8 4 1 0 26 

Alprazolam 

308.77 4 0 1 0 3 
308.77 4 0 1 0 4 
308.77 4 0 1 0 5 
308.77 4 0 1 0 7 
308.77 4 0 1 0 8 
308.77 4 0 1 0 9 
308.77 4 0 1 0 11 
308.77 4 0 1 0 12 
308.77 4 0 1 0 13 
308.77 4 0 1 0 16 
308.77 4 0 1 0 21 
308.77 4 0 1 0 23 
308.77 4 0 1 0 25 

Ammonium Sulfate 
132.14 4 2 1 0 3 
132.14 4 2 1 0 17 
132.14 4 2 1 0 22 

Aspirin 180.16 4 1 1 0 2 
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180.16 4 1 1 0 3 
180.16 4 1 1 0 4 
180.16 4 1 1 0 5 
180.16 4 1 1 0 6 
180.16 4 1 1 0 7 
180.16 4 1 1 0 8 
180.16 4 1 1 0 9 
180.16 4 1 1 0 10 
180.16 4 1 1 0 11 
180.16 4 1 1 0 12 
180.16 4 1 1 0 13 
180.16 4 1 1 0 14 
180.16 4 1 1 0 15 
180.16 4 1 1 0 16 
180.16 4 1 1 0 17 
180.16 4 1 1 0 19 
180.16 4 1 1 0 21 
180.16 4 1 1 0 22 
180.16 4 1 1 0 23 
180.16 4 1 1 0 24 
180.16 4 1 1 0 25 
180.16 4 1 1 0 26 
180.16 4 1 1 0 27 

Atenolol 

266.34 5 4 1 0 3 
266.34 5 4 1 0 4 
266.34 5 4 1 0 5 
266.34 5 4 1 0 7 
266.34 5 4 1 0 9 
266.34 5 4 1 0 11 
266.34 5 4 1 0 12 
266.34 5 4 1 0 13 
266.34 5 4 1 0 14 
266.34 5 4 1 0 15 
266.34 5 4 1 0 16 
266.34 5 4 1 0 17 
266.34 5 4 1 0 21 
266.34 5 4 1 0 23 
266.34 5 4 1 0 24 
266.34 5 4 1 0 25 
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Azithromycin 

749.00 14 5 1 0 2 
749.00 14 5 1 0 3 
749.00 14 5 1 0 5 
749.00 14 5 1 0 7 
749.00 14 5 1 0 8 
749.00 14 5 1 0 9 
749.00 14 5 1 0 10 
749.00 14 5 1 0 11 
749.00 14 5 1 0 12 
749.00 14 5 1 0 13 
749.00 14 5 1 0 14 
749.00 14 5 1 0 15 
749.00 14 5 1 0 16 
749.00 14 5 1 0 17 
749.00 14 5 1 0 19 
749.00 14 5 1 0 21 
749.00 14 5 1 0 22 
749.00 14 5 1 0 23 
749.00 14 5 1 0 24 
749.00 14 5 1 0 24 
749.00 14 5 1 0 26 

Benzene 

78.12 0 0 5 0 1 
78.12 0 0 1 0 3 
78.12 0 0 1 0 4 
78.12 0 0 1 0 5 
78.12 0 0 1 0 7 
78.12 0 0 1 0 9 
78.12 0 0 1 0 10 
78.12 0 0 1 0 11 
78.12 0 0 1 0 14 
78.12 0 0 1 0 15 
78.12 0 0 1 0 16 
78.12 0 0 1 0 17 
78.12 0 0 1 0 18 
78.12 0 0 1 0 21 
78.12 0 0 1 0 22 
78.12 0 0 1 0 23 
78.12 0 0 1 0 25 
78.12 0 0 1 0 27 
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Benzyl-penicillin 

334.40 6 2 9 0 1 
334.40 6 2 1 0 2 
334.40 6 2 1 0 3 
334.40 6 2 1 0 4 
334.40 6 2 1 0 5 
334.40 6 2 1 0 7 
334.40 6 2 1 0 8 
334.40 6 2 1 0 9 
334.40 6 2 1 0 10 
334.40 6 2 1 0 11 
334.40 6 2 1 0 12 
334.40 6 2 1 0 14 
334.40 6 2 1 0 16 
334.40 6 2 1 0 17 
334.40 6 2 1 0 19 
334.40 6 2 1 0 20 
334.40 6 2 1 0 21 
334.40 6 2 1 0 22 
334.40 6 2 1 0 23 
334.40 6 2 1 0 24 
334.40 6 2 1 0 25 
334.40 6 2 1 0 26 

Caffeine 

194.19 6 0 9 0 1 
194.19 6 0 1 0 2 
194.19 6 0 1 0 3 
194.19 6 0 1 0 4 
194.19 6 0 1 0 5 
194.19 6 0 1 0 7 
194.19 6 0 1 0 8 
194.19 6 0 1 0 9 
194.19 6 0 1 0 10 
194.19 6 0 1 0 11 
194.19 6 0 1 0 12 
194.19 6 0 1 0 13 
194.19 6 0 1 0 14 
194.19 6 0 1 0 15 
194.19 6 0 1 0 16 
194.19 6 0 1 0 17 
194.19 6 0 1 0 19 
194.19 6 0 1 0 21 
194.19 6 0 1 0 22 
194.19 6 0 1 0 23 
194.19 6 0 1 0 25 
194.19 6 0 1 0 27 

Candoxatril 

515.65 8 2 1 0 3 
515.65 8 2 1 0 7 
515.65 8 2 1 0 16 
515.65 8 2 1 0 17 
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Carbamazepine 

236.28 3 2 9 0 1 
236.28 3 2 1 0 3 
236.28 3 2 1 0 4 
236.28 3 2 1 0 5 
236.28 3 2 1 0 7 
236.28 3 2 1 0 8 
236.28 3 2 1 0 9 
236.28 3 2 1 0 10 
236.28 3 2 1 0 11 
236.28 3 2 1 0 12 
236.28 3 2 1 0 13 
236.28 3 2 1 0 14 
236.28 3 2 1 0 15 
236.28 3 2 1 0 16 
236.28 3 2 1 0 17 
236.28 3 2 1 0 19 
236.28 3 2 1 0 21 
236.28 3 2 1 0 22 
236.28 3 2 1 0 23 
236.28 3 2 1 0 24 
236.28 3 2 1 0 25 
236.28 3 2 1 0 26 

Caustic Soda 

40.00 1 1 9 0 1 
40.00 1 1 1 0 5 
40.00 1 1 1 0 19 
40.00 1 1 1 0 22 
40.00 1 1 1 0 27 

Chloramphenicol 

323.14 7 3 1 0 2 
323.14 7 3 1 0 3 
323.14 7 3 1 0 5 
323.14 7 3 1 0 8 
323.14 7 3 1 0 9 
323.14 7 3 1 0 10 
323.14 7 3 1 0 11 
323.14 7 3 1 0 12 
323.14 7 3 1 0 14 
323.14 7 3 1 0 15 
323.14 7 3 1 0 16 
323.14 7 3 1 0 17 
323.14 7 3 1 0 19 
323.14 7 3 1 0 21 
323.14 7 3 1 0 22 
323.14 7 3 1 0 23 
323.14 7 3 1 0 25 
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Cimetidine 

252.34 6 3 1 0 2 
252.34 6 3 1 0 3 
252.34 6 3 1 0 4 
252.34 6 3 1 0 5 
252.34 6 3 1 0 7 
252.34 6 3 1 0 8 
252.34 6 3 1 0 9 
252.34 6 3 1 0 11 
252.34 6 3 1 0 12 
252.34 6 3 1 0 13 
252.34 6 3 1 0 14 
252.34 6 3 1 0 15 
252.34 6 3 1 0 16 
252.34 6 3 1 0 17 
252.34 6 3 1 0 19 
252.34 6 3 1 0 21 
252.34 6 3 1 0 22 
252.34 6 3 1 0 23 
252.34 6 3 1 0 24 
252.34 6 3 1 0 25 
252.34 6 3 1 0 26 
252.34 6 3 1 0 27 

Clonidine 

230.10 3 2 1 0 3 
230.10 3 2 1 0 4 
230.10 3 2 1 0 5 
230.10 3 2 1 0 7 
230.10 3 2 1 0 8 
230.10 3 2 1 0 9 
230.10 3 2 1 0 11 
230.10 3 2 1 0 12 
230.10 3 2 1 0 13 
230.10 3 2 1 0 14 
230.10 3 2 1 0 16 
230.10 3 2 1 0 17 
230.10 3 2 1 0 19 
230.10 3 2 1 0 21 
230.10 3 2 1 0 22 
230.10 3 2 1 0 23 
230.10 3 2 1 0 24 
230.10 3 2 1 0 25 
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Copper Sulfate 

159.61 4 0 1 0 4 
159.61 4 0 1 0 5 
159.61 4 0 1 0 9 
159.61 4 0 1 0 12 
159.61 4 0 1 0 13 
159.61 4 0 1 0 14 
159.61 4 0 1 0 16 
159.61 4 0 1 0 17 
159.61 4 0 1 0 19 
159.61 4 0 1 0 21 
159.61 4 0 1 0 22 
159.61 4 0 1 0 25 

Cyclosporine 

1202.64 23 5 9 0 1 
1202.64 23 5 1 0 2 
1202.64 23 5 1 0 3 
1202.64 23 5 1 0 4 
1202.64 23 5 1 0 5 
1202.64 23 5 1 0 7 
1202.64 23 5 1 0 8 
1202.64 23 5 1 0 9 
1202.64 23 5 1 0 10 
1202.64 23 5 1 0 11 
1202.64 23 5 1 0 12 
1202.64 23 5 1 0 13 
1202.64 23 5 1 0 14 
1202.64 23 5 1 0 15 
1202.64 23 5 1 0 16 
1202.64 23 5 1 0 17 
1202.64 23 5 1 0 19 
1202.64 23 5 1 0 20 
1202.64 23 5 1 0 21 
1202.64 23 5 1 0 22 
1202.64 23 5 1 0 23 
1202.64 23 5 1 0 23 
1202.64 23 5 1 0 25 
1202.64 23 5 1 0 26 
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Desipramine 

266.39 2 1 1 0 2 
266.39 2 1 1 0 3 
266.39 2 1 1 0 4 
266.39 2 1 1 0 5 
266.39 2 1 1 0 7 
266.39 2 1 1 0 8 
266.39 2 1 1 0 9 
266.39 2 1 1 0 11 
266.39 2 1 1 0 12 
266.39 2 1 1 0 13 
266.39 2 1 1 0 15 
266.39 2 1 1 0 16 
266.39 2 1 1 0 17 
266.39 2 1 1 0 21 
266.39 2 1 1 0 22 
266.39 2 1 1 0 23 
266.39 2 1 1 0 25 

Dexamethasone 

392.47 5 3 1 0 2 
392.47 5 3 1 0 3 
392.47 5 3 1 0 4 
392.47 5 3 1 0 5 
392.47 5 3 1 0 7 
392.47 5 3 1 0 8 
392.47 5 3 1 0 9 
392.47 5 3 1 0 10 
392.47 5 3 1 0 11 
392.47 5 3 1 0 12 
392.47 5 3 1 0 13 
392.47 5 3 1 0 14 
392.47 5 3 1 0 15 
392.47 5 3 1 0 16 
392.47 5 3 1 0 17 
392.47 5 3 1 0 19 
392.47 5 3 1 0 20 
392.47 5 3 1 0 21 
392.47 5 3 1 0 22 
392.47 5 3 1 0 23 
392.47 5 3 1 0 24 
392.47 5 3 1 0 25 
392.47 5 3 1 0 26 
392.47 5 3 1 0 27 
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Diazepam 

284.75 3 0 1 0 2 
284.75 3 0 1 0 2 
284.75 3 0 1 0 4 
284.75 3 0 1 0 5 
284.75 3 0 1 0 8 
284.75 3 0 1 0 9 
284.75 3 0 1 0 11 
284.75 3 0 1 0 12 
284.75 3 0 1 0 13 
284.75 3 0 1 0 14 
284.75 3 0 1 0 15 
284.75 3 0 1 0 16 
284.75 3 0 1 0 17 
284.75 3 0 1 0 19 
284.75 3 0 1 0 21 
284.75 3 0 1 0 22 
284.75 3 0 1 0 23 
284.75 3 0 1 0 24 
284.75 3 0 1 0 25 
284.75 3 0 1 0 27 

Diclofenac 

296.15 3 2 1 0 2 
296.15 3 2 1 0 3 
296.15 3 2 1 0 4 
296.15 3 2 1 0 5 
296.15 3 2 1 0 7 
296.15 3 2 1 0 8 
296.15 3 2 1 0 9 
296.15 3 2 1 0 11 
296.15 3 2 1 0 12 
296.15 3 2 1 0 13 
296.15 3 2 1 0 14 
296.15 3 2 1 0 15 
296.15 3 2 1 0 16 
296.15 3 2 1 0 17 
296.15 3 2 1 0 19 
296.15 3 2 1 0 21 
296.15 3 2 1 0 22 
296.15 3 2 1 0 23 
296.15 3 2 1 0 25 
296.15 3 2 1 0 26 
296.15 3 2 1 0 27 



 

84 

Diltiazem-HCl 

414.53 6 0 1 0 3 
414.53 6 0 1 0 4 
414.53 6 0 1 0 4 
414.53 6 0 1 0 7 
414.53 6 0 1 0 8 
414.53 6 0 1 0 9 
414.53 6 0 1 0 10 
414.53 6 0 1 0 11 
414.53 6 0 1 0 12 
414.53 6 0 1 0 13 
414.53 6 0 1 0 14 
414.53 6 0 1 0 15 
414.53 6 0 1 0 16 
414.53 6 0 1 0 17 
414.53 6 0 1 0 21 
414.53 6 0 1 0 23 
414.53 6 0 1 0 25 

Doxorubicin 

543.53 12 7 9 0 1 
543.53 12 7 1 0 2 
543.53 12 7 1 0 3 
543.53 12 7 1 0 4 
543.53 12 7 1 0 5 
543.53 12 7 1 0 7 
543.53 12 7 1 0 8 
543.53 12 7 1 0 9 
543.53 12 7 1 0 10 
543.53 12 7 1 0 11 
543.53 12 7 1 0 12 
543.53 12 7 1 0 13 
543.53 12 7 1 0 14 
543.53 12 7 1 0 15 
543.53 12 7 1 0 16 
543.53 12 7 1 0 17 
543.53 12 7 1 0 19 
543.53 12 7 1 0 21 
543.53 12 7 1 0 22 
543.53 12 7 1 0 23 
543.53 12 7 1 0 24 
543.53 12 7 1 0 25 
543.53 12 7 1 0 26 
543.53 12 7 1 0 27 

Enalaprilat 
376.46 7 2 1 0 3 
376.46 7 2 1 0 5 
376.46 7 2 1 0 21 



 

85 

Erythromycin 

733.95 14 5 9 0 1 
733.95 14 5 1 0 2 
733.95 14 5 1 0 3 
733.95 14 5 1 0 4 
733.95 14 5 1 0 5 
733.95 14 5 1 0 7 
733.95 14 5 1 0 8 
733.95 14 5 1 0 9 
733.95 14 5 1 0 10 
733.95 14 5 1 0 11 
733.95 14 5 1 0 12 
733.95 14 5 1 0 13 
733.95 14 5 1 0 14 
733.95 14 5 1 0 15 
733.95 14 5 1 0 16 
733.95 14 5 1 0 17 
733.95 14 5 1 0 19 
733.95 14 5 1 0 20 
733.95 14 5 1 0 21 
733.95 14 5 1 0 22 
733.95 14 5 1 0 23 
733.95 14 5 1 0 24 
733.95 14 5 1 0 25 
733.95 14 5 1 0 26 

Ethylene Glycol 

62.07 2 2 1 0 4 
62.07 2 2 1 0 5 
62.07 2 2 1 0 9 
62.07 2 2 1 0 12 
62.07 2 2 1 0 14 
62.07 2 2 1 0 16 
62.07 2 2 1 0 25 
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Famotidine 

337.45 9 8 1 0 3 
337.45 9 8 1 0 4 
337.45 9 8 1 0 5 
337.45 9 8 1 0 7 
337.45 9 8 1 0 9 
337.45 9 8 1 0 11 
337.45 9 8 1 0 12 
337.45 9 8 1 0 13 
337.45 9 8 1 0 14 
337.45 9 8 1 0 15 
337.45 9 8 1 0 16 
337.45 9 8 1 0 17 
337.45 9 8 1 0 21 
337.45 9 8 1 0 22 
337.45 9 8 1 0 23 
337.45 9 8 1 0 25 
337.45 9 8 1 0 26 
337.45 9 8 1 0 27 

Felodipine 

384.26 5 1 1 0 3 
384.26 5 1 1 0 9 
384.26 5 1 1 0 12 
384.26 5 1 1 0 16 
384.26 5 1 1 0 21 
384.26 5 1 1 0 23 
384.26 5 1 1 0 24 

Ferric Chloride 

162.20 0 0 1 0 3 
162.20 0 0 1 0 5 
162.20 0 0 1 0 9 
162.20 0 0 1 0 11 
162.20 0 0 1 0 12 
162.20 0 0 1 0 16 
162.20 0 0 1 0 21 
162.20 0 0 1 0 25 
162.20 0 0 1 0 27 
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Fluorouracil 

130.08 4 2 1 0 2 
130.08 4 2 1 0 3 
130.08 4 2 1 0 4 
130.08 4 2 1 0 5 
130.08 4 2 1 0 7 
130.08 4 2 1 0 8 
130.08 4 2 1 0 9 
130.08 4 2 1 0 10 
130.08 4 2 1 0 11 
130.08 4 2 1 0 12 
130.08 4 2 1 0 13 
130.08 4 2 1 0 14 
130.08 4 2 1 0 15 
130.08 4 2 1 0 16 
130.08 4 2 1 0 17 
130.08 4 2 1 0 19 
130.08 4 2 1 0 21 
130.08 4 2 1 0 22 
130.08 4 2 1 0 23 
130.08 4 2 1 0 24 
130.08 4 2 1 0 25 
130.08 4 2 1 0 26 
130.08 4 2 1 0 27 

Flurbiprofen 

244.27 2 1 1 0 3 
244.27 2 1 1 0 4 
244.27 2 1 1 0 5 
244.27 2 1 1 0 8 
244.27 2 1 1 0 9 
244.27 2 1 1 0 11 
244.27 2 1 1 0 12 
244.27 2 1 1 0 13 
244.27 2 1 1 0 14 
244.27 2 1 1 0 15 
244.27 2 1 1 0 16 
244.27 2 1 1 0 17 
244.27 2 1 1 0 19 
244.27 2 1 1 0 21 
244.27 2 1 1 0 22 
244.27 2 1 1 0 23 
244.27 2 1 1 0 24 
244.27 2 1 1 0 25 
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Formaldehyde 

30.03 1 0 3 0 1 
30.03 1 0 5 0 1 
30.03 1 0 1 0 2 
30.03 1 0 1 0 3 
30.03 1 0 1 0 4 
30.03 1 0 1 0 5 
30.03 1 0 1 0 7 
30.03 1 0 1 0 8 
30.03 1 0 1 0 9 
30.03 1 0 1 0 11 
30.03 1 0 1 0 12 
30.03 1 0 1 0 13 
30.03 1 0 1 0 14 
30.03 1 0 1 0 15 
30.03 1 0 1 0 16 
30.03 1 0 1 0 18 
30.03 1 0 1 0 19 
30.03 1 0 1 0 20 
30.03 1 0 1 0 21 
30.03 1 0 1 0 22 
30.03 1 0 1 0 23 
30.03 1 0 1 0 24 
30.03 1 0 1 0 25 
30.03 1 0 1 0 26 

Furosemide 

330.75 7 4 1 0 3 
330.75 7 4 1 0 4 
330.75 7 4 1 0 5 
330.75 7 4 1 0 7 
330.75 7 4 1 0 9 
330.75 7 4 1 0 10 
330.75 7 4 1 0 11 
330.75 7 4 1 0 12 
330.75 7 4 1 0 13 
330.75 7 4 1 0 14 
330.75 7 4 1 0 15 
330.75 7 4 1 0 16 
330.75 7 4 1 0 17 
330.75 7 4 1 0 19 
330.75 7 4 1 0 21 
330.75 7 4 1 0 22 
330.75 7 4 1 0 23 
330.75 7 4 1 0 25 
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Gabapentin 

30.03 1 0 1 0 27 
171.24 3 2 1 0 3 
171.24 3 2 1 0 4 
171.24 3 2 1 0 5 
171.24 3 2 1 0 7 
171.24 3 2 1 0 8 
171.24 3 2 1 0 9 
171.24 3 2 1 0 12 
171.24 3 2 1 0 13 
171.24 3 2 1 0 15 
171.24 3 2 1 0 16 
171.24 3 2 1 0 17 
171.24 3 2 1 0 21 
171.24 3 2 1 0 23 
171.24 3 2 1 0 24 

Glycerol 

92.09 3 3 9 0 1 
92.09 3 3 1 0 3 
92.09 3 3 1 0 7 
92.09 3 3 1 0 8 
92.09 3 3 1 0 9 
92.09 3 3 1 0 12 
92.09 3 3 1 0 14 
92.09 3 3 1 0 16 
92.09 3 3 1 0 17 
92.09 3 3 1 0 21 

Hydrobromic Acid 171.24 3 2 1 0 25 
80.91 0 0 1 0 16 



 

90 

Hydrochloric Acid 

36.46 0 1 1 0 2 
36.46 0 1 1 0 3 
36.46 0 1 1 0 4 
36.46 0 1 1 0 5 
36.46 0 1 1 0 7 
36.46 0 1 1 0 9 
36.46 0 1 1 0 11 
36.46 0 1 1 0 12 
36.46 0 1 1 0 13 
36.46 0 1 1 0 14 
36.46 0 1 1 0 15 
36.46 0 1 1 0 16 
36.46 0 1 1 0 17 
36.46 0 1 1 0 18 
36.46 0 1 1 0 19 
36.46 0 1 1 0 20 
36.46 0 1 1 0 21 
36.46 0 1 1 0 22 
36.46 0 1 1 0 23 
36.46 0 1 1 0 24 
36.46 0 1 1 0 25 
36.46 0 1 1 0 27 

Hydrochlorothiazide 

297.74 7 4 1 0 3 
297.74 7 4 1 0 4 
297.74 7 4 1 0 5 
297.74 7 4 1 0 7 
297.74 7 4 1 0 9 
297.74 7 4 1 0 11 
297.74 7 4 1 0 12 
297.74 7 4 1 0 13 
297.74 7 4 1 0 14 
297.74 7 4 1 0 16 
297.74 7 4 1 0 17 
297.74 7 4 1 0 21 
297.74 7 4 1 0 22 
297.74 7 4 1 0 23 
297.74 7 4 1 0 24 
297.74 7 4 1 0 25 
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Hydrofluoric Acid 

20.01 1 1 1 0 5 
20.01 1 1 1 0 9 
20.01 1 1 1 0 12 
20.01 1 1 1 0 13 
20.01 1 1 1 0 14 
20.01 1 1 1 0 16 
20.01 1 1 1 0 17 
20.01 1 1 1 0 21 
20.01 1 1 1 0 22 
20.01 1 1 1 0 24 
20.01 1 1 1 0 25 
20.01 1 1 1 0 27 

Ibuprofen 

206.29 2 1 1 0 2 
206.29 2 1 1 0 3 
206.29 2 1 1 0 4 
206.29 2 1 1 0 5 
206.29 2 1 1 0 7 
206.29 2 1 1 0 8 
206.29 2 1 1 0 9 
206.29 2 1 1 0 10 
206.29 2 1 1 0 11 
206.29 2 1 1 0 12 
206.29 2 1 1 0 13 
206.29 2 1 1 0 14 
206.29 2 1 1 0 15 
206.29 2 1 1 0 16 
206.29 2 1 1 0 17 
206.29 2 1 1 0 19 
206.29 2 1 1 0 21 
206.29 2 1 1 0 22 
206.29 2 1 1 0 23 
206.29 2 1 1 0 24 
206.29 2 1 1 0 25 
206.29 2 1 1 0 26 
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Imipramine 

280.42 2 0 1 0 3 
280.42 2 0 1 0 4 
280.42 2 0 1 0 5 
280.42 2 0 1 0 7 
280.42 2 0 1 0 8 
280.42 2 0 1 0 9 
280.42 2 0 1 0 11 
280.42 2 0 1 0 12 
280.42 2 0 1 0 13 
280.42 2 0 1 0 14 
280.42 2 0 1 0 15 
280.42 2 0 1 0 16 
280.42 2 0 1 0 17 
280.42 2 0 1 0 19 
280.42 2 0 1 0 21 
280.42 2 0 1 0 22 
280.42 2 0 1 0 23 
280.42 2 0 1 0 24 
280.42 2 0 1 0 25 

Isopropyl Alcohol 60.10 1 1 1 0 2 

Itraconazole 

705.65 12 0 1 0 2 
705.65 12 0 1 0 3 
705.65 12 0 1 0 4 
705.65 12 0 1 0 5 
705.65 12 0 1 0 7 
705.65 12 0 1 0 9 
705.65 12 0 1 0 11 
705.65 12 0 1 0 12 
705.65 12 0 1 0 13 
705.65 12 0 1 0 14 
705.65 12 0 1 0 15 
705.65 12 0 1 0 16 
705.65 12 0 1 0 17 
705.65 12 0 1 0 19 
705.65 12 0 1 0 20 
705.65 12 0 1 0 21 
705.65 12 0 1 0 22 
705.65 12 0 1 0 23 
705.65 12 0 1 0 25 
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Ketoconazole 

380.92 1 0 9 0 1 
380.92 1 0 1 0 2 
380.92 1 0 1 0 3 
380.92 1 0 1 0 4 
380.92 1 0 1 0 5 
380.92 1 0 1 0 7 
380.92 1 0 1 0 8 
380.92 1 0 1 0 9 
380.92 1 0 1 0 11 
380.92 1 0 1 0 12 
380.92 1 0 1 0 13 
380.92 1 0 1 0 14 
380.92 1 0 1 0 15 
380.92 1 0 1 0 16 
380.92 1 0 1 0 17 
380.92 1 0 1 0 20 
380.92 1 0 1 0 21 
380.92 1 0 1 0 22 
380.92 1 0 1 0 23 
380.92 1 0 1 0 24 
380.92 1 0 1 0 25 
380.92 1 0 1 0 27 

Ketoprofen 

254.29 3 1 1 0 3 
254.29 3 1 1 0 4 
254.29 3 1 1 0 5 
254.29 3 1 1 0 9 
254.29 3 1 1 0 11 
254.29 3 1 1 0 12 
254.29 3 1 1 0 13 
254.29 3 1 1 0 14 
254.29 3 1 1 0 16 
254.29 3 1 1 0 21 
254.29 3 1 1 0 22 
254.29 3 1 1 0 23 
254.29 3 1 1 0 25 
254.29 3 1 1 0 27 
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Labetalol-HCl 

328.42 5 5 1 0 2 
328.42 5 5 1 0 3 
328.42 5 5 1 0 4 
328.42 5 5 1 0 4 
328.42 5 5 1 0 5 
328.42 5 5 1 0 7 
328.42 5 5 1 0 9 
328.42 5 5 1 0 11 
328.42 5 5 1 0 12 
328.42 5 5 1 0 13 
328.42 5 5 1 0 14 
328.42 5 5 1 0 15 
328.42 5 5 1 0 16 
328.42 5 5 1 0 17 
328.42 5 5 1 0 21 
328.42 5 5 1 0 22 
328.42 5 5 1 0 23 
328.42 5 5 1 0 25 

Lisinopril 

405.50 8 5 1 0 3 
405.50 8 5 1 0 4 
405.50 8 5 1 0 5 
405.50 8 5 1 0 7 
405.50 8 5 1 0 8 
405.50 8 5 1 0 9 
405.50 8 5 1 0 11 
405.50 8 5 1 0 12 
405.50 8 5 1 0 13 
405.50 8 5 1 0 14 
405.50 8 5 1 0 16 
405.50 8 5 1 0 17 
405.50 8 5 1 0 21 
405.50 8 5 1 0 22 
405.50 8 5 1 0 23 
405.50 8 5 1 0 24 
405.50 8 5 1 0 25 
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Magnesium Sulfate 

120.37 4 0 1 0 2 
120.37 4 0 1 0 3 
120.37 4 0 1 0 4 
120.37 4 0 1 0 5 
120.37 4 0 1 0 8 
120.37 4 0 1 0 9 
120.37 4 0 1 0 11 
120.37 4 0 1 0 12 
120.37 4 0 1 0 13 
120.37 4 0 1 0 14 
120.37 4 0 1 0 16 
120.37 4 0 1 0 17 
120.37 4 0 1 0 21 
120.37 4 0 1 0 22 
120.37 4 0 1 0 25 
120.37 4 0 1 0 27 

Mannitol 

182.18 6 6 1 0 3 
182.18 6 6 1 0 5 
182.18 6 6 1 0 7 
182.18 6 6 1 0 8 
182.18 6 6 1 0 9 
182.18 6 6 1 0 11 
182.18 6 6 1 0 12 
182.18 6 6 1 0 14 
182.18 6 6 1 0 15 
182.18 6 6 1 0 16 
182.18 6 6 1 0 17 
182.18 6 6 1 0 21 
182.18 6 6 1 0 22 
182.18 6 6 1 0 23 
182.18 6 6 1 0 24 
182.18 6 6 1 0 25 
182.18 6 6 1 0 26 
182.18 6 6 1 0 27 
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Methotrexate 

454.45 13 7 1 0 2 
454.45 13 7 1 0 3 
454.45 13 7 1 0 4 
454.45 13 7 1 0 4 
454.45 13 7 1 0 5 
454.45 13 7 1 0 7 
454.45 13 7 1 0 8 
454.45 13 7 1 0 9 
454.45 13 7 1 0 10 
454.45 13 7 1 0 11 
454.45 13 7 1 0 12 
454.45 13 7 1 0 13 
454.45 13 7 1 0 14 
454.45 13 7 1 0 15 
454.45 13 7 1 0 16 
454.45 13 7 1 0 17 
454.45 13 7 1 0 19 
454.45 13 7 1 0 21 
454.45 13 7 1 0 22 
454.45 13 7 1 0 23 
454.45 13 7 1 0 24 
454.45 13 7 1 0 25 
454.45 13 7 1 0 26 
454.45 13 7 1 0 27 

Metoprolol-tartrate 

267.37 4 2 1 0 3 
267.37 4 2 1 0 4 
267.37 4 2 1 0 5 
267.37 4 2 1 0 7 
267.37 4 2 1 0 8 
267.37 4 2 1 0 9 
267.37 4 2 1 0 11 
267.37 4 2 1 0 12 
267.37 4 2 1 0 13 
267.37 4 2 1 0 14 
267.37 4 2 1 0 15 
267.37 4 2 1 0 16 
267.37 4 2 1 0 17 
267.37 4 2 1 0 21 
267.37 4 2 1 0 22 
267.37 4 2 1 0 23 
267.37 4 2 1 0 24 
267.37 4 2 1 0 25 
267.37 4 2 1 0 27 
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Nadolol 

309.41 5 4 1 0 3 
309.41 5 4 1 0 5 
309.41 5 4 1 0 7 
309.41 5 4 1 0 11 
309.41 5 4 1 0 13 
309.41 5 4 1 0 16 
309.41 5 4 1 0 21 
309.41 5 4 1 0 23 
309.41 5 4 1 0 24 
309.41 5 4 1 0 25 

Naloxone 

327.38 5 2 1 0 2 
327.38 5 2 1 0 3 
327.38 5 2 1 0 4 
327.38 5 2 1 0 5 
327.38 5 2 1 0 7 
327.38 5 2 1 0 8 
327.38 5 2 1 0 9 
327.38 5 2 1 0 10 
327.38 5 2 1 0 11 
327.38 5 2 1 0 12 
327.38 5 2 1 0 13 
327.38 5 2 1 0 14 
327.38 5 2 1 0 15 
327.38 5 2 1 0 16 
327.38 5 2 1 0 17 
327.38 5 2 1 0 19 
327.38 5 2 1 0 21 
327.38 5 2 1 0 22 
327.38 5 2 1 0 23 
327.38 5 2 1 0 24 
327.38 5 2 1 0 25 
327.38 5 2 1 0 27 
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Naproxen-sodium 

230.27 3 1 1 0 2 
230.27 3 1 1 0 3 
230.27 3 1 1 0 4 
230.27 3 1 1 0 5 
230.27 3 1 1 0 7 
230.27 3 1 1 0 9 
230.27 3 1 1 0 11 
230.27 3 1 1 0 12 
230.27 3 1 1 0 13 
230.27 3 1 1 0 14 
230.27 3 1 1 0 16 
230.27 3 1 1 0 17 
230.27 3 1 1 0 19 
230.27 3 1 1 0 21 
230.27 3 1 1 0 22 
230.27 3 1 1 0 23 
230.27 3 1 1 0 24 
230.27 3 1 1 0 25 
230.27 3 1 1 0 26 
230.27 3 1 1 0 27 

Nortriptylene-HCl 

263.39 1 1 1 0 3 
263.39 1 1 1 0 4 
263.39 1 1 1 0 5 
263.39 1 1 1 0 8 
263.39 1 1 1 0 9 
263.39 1 1 1 0 12 
263.39 1 1 1 0 13 
263.39 1 1 1 0 16 
263.39 1 1 1 0 17 
263.39 1 1 1 0 19 
263.39 1 1 1 0 21 
263.39 1 1 1 0 22 
263.39 1 1 1 0 24 
263.39 1 1 1 0 25 
263.39 1 1 1 0 27 
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Omeprazole 

267.25 9 2 1 0 2 
267.25 9 2 1 0 3 
267.25 9 2 1 0 4 
267.25 9 2 1 0 5 
267.25 9 2 1 0 7 
267.25 9 2 1 0 8 
267.25 9 2 1 0 9 
267.25 9 2 1 0 11 
267.25 9 2 1 0 12 
267.25 9 2 1 0 13 
267.25 9 2 1 0 14 
267.25 9 2 1 0 15 
267.25 9 2 1 0 16 
267.25 9 2 1 0 17 
267.25 9 2 1 0 19 
267.25 9 2 1 0 20 
267.25 9 2 1 0 21 
267.25 9 2 1 0 22 
267.25 9 2 1 0 23 
267.25 9 2 1 0 24 
267.25 9 2 1 0 25 

Phenytoin 

451.49 10 2 1 0 3 
451.49 10 2 1 0 4 
451.49 10 2 1 0 5 
451.49 10 2 1 0 7 
451.49 10 2 1 0 8 
451.49 10 2 1 0 9 
451.49 10 2 1 0 10 
451.49 10 2 1 0 11 
451.49 10 2 1 0 12 
451.49 10 2 1 0 13 
451.49 10 2 1 0 14 
451.49 10 2 1 0 15 
451.49 10 2 1 0 16 
451.49 10 2 1 0 17 
451.49 10 2 1 0 19 
451.49 10 2 1 0 21 
451.49 10 2 1 0 22 
451.49 10 2 1 0 23 
451.49 10 2 1 0 24 
451.49 10 2 1 0 25 
451.49 10 2 1 0 26 
451.49 10 2 1 0 27 
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Piroxicam 

331.35 7 2 1 0 3 
331.35 7 2 1 0 4 
331.35 7 2 1 0 5 
331.35 7 2 1 0 8 
331.35 7 2 1 0 9 
331.35 7 2 1 0 11 
331.35 7 2 1 0 12 
331.35 7 2 1 0 14 
331.35 7 2 1 0 15 
331.35 7 2 1 0 16 
331.35 7 2 1 0 17 
331.35 7 2 1 0 19 
331.35 7 2 1 0 21 
331.35 7 2 1 0 22 
331.35 7 2 1 0 23 
331.35 7 2 1 0 25 
331.35 7 2 1 0 26 
331.35 7 2 1 0 27 

Potassium Bromide 119.00 1 0 1 0 16 
Potassium Permanganate 158.03 4 0 1 0 5 

Prazosin 

383.41 9 2 1 0 3 
383.41 9 2 1 0 4 
383.41 9 2 1 0 5 
383.41 9 2 1 0 7 
383.41 9 2 1 0 8 
383.41 9 2 1 0 9 
383.41 9 2 1 0 11 
383.41 9 2 1 0 12 
383.41 9 2 1 0 13 
383.41 9 2 1 0 14 
383.41 9 2 1 0 15 
383.41 9 2 1 0 16 
383.41 9 2 1 0 17 
383.41 9 2 1 0 21 
383.41 9 2 1 0 23 
383.41 9 2 1 0 25 
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Propranolol-HCl 

259.35 3 2 1 0 3 
259.35 3 2 1 0 4 
259.35 3 2 1 0 5 
259.35 3 2 1 0 7 
259.35 3 2 1 0 8 
259.35 3 2 1 0 9 
259.35 3 2 1 0 11 
259.35 3 2 1 0 12 
259.35 3 2 1 0 13 
259.35 3 2 1 0 14 
259.35 3 2 1 0 15 
259.35 3 2 1 0 16 
259.35 3 2 1 0 17 
259.35 3 2 1 0 19 
259.35 3 2 1 0 21 
259.35 3 2 1 0 22 
259.35 3 2 1 0 23 
259.35 3 2 1 0 24 
259.35 3 2 1 0 25 
259.35 3 2 1 0 27 

Quinidine 

324.43 4 1 1 0 3 
324.43 4 1 1 0 4 
324.43 4 1 1 0 5 
324.43 4 1 1 0 8 
324.43 4 1 1 0 9 
324.43 4 1 1 0 10 
324.43 4 1 1 0 11 
324.43 4 1 1 0 12 
324.43 4 1 1 0 13 
324.43 4 1 1 0 14 
324.43 4 1 1 0 16 
324.43 4 1 1 0 17 
324.43 4 1 1 0 19 
324.43 4 1 1 0 20 
324.43 4 1 1 0 21 
324.43 4 1 1 0 22 
324.43 4 1 1 0 23 
324.43 4 1 1 0 25 
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Ranitidine-HCl 

314.41 7 2 1 0 2 
314.41 7 2 1 0 3 
314.41 7 2 1 0 3 
314.41 7 2 1 0 5 
314.41 7 2 1 0 7 
314.41 7 2 1 0 8 
314.41 7 2 1 0 9 
314.41 7 2 1 0 11 
314.41 7 2 1 0 12 
314.41 7 2 1 0 13 
314.41 7 2 1 0 14 
314.41 7 2 1 0 15 
314.41 7 2 1 0 16 
314.41 7 2 1 0 17 
314.41 7 2 1 0 19 
314.41 7 2 1 0 21 
314.41 7 2 1 0 22 
314.41 7 2 1 0 23 
314.41 7 2 1 0 24 
314.41 7 2 1 0 25 
314.41 7 2 1 0 26 
314.41 7 2 1 0 27 

Silver Nitrate 169.87 3 0 1 0 11 

Sodium Thiosulfate 

158.11 4 0 1 0 9 
158.11 4 0 1 0 12 
158.11 4 0 1 0 16 
158.11 4 0 1 0 17 
158.11 4 0 1 0 19 
158.11 4 0 1 0 25 

Tenidap 

320.76 5 2 1 0 9 
320.76 5 2 1 0 11 
320.76 5 2 1 0 12 
320.76 5 2 1 0 14 
320.76 5 2 1 0 23 
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Terfenadine 

471.69 3 2 1 0 3 
471.69 3 2 1 0 4 
471.69 3 2 1 0 5 
471.69 3 2 1 0 9 
471.69 3 2 1 0 11 
471.69 3 2 1 0 12 
471.69 3 2 1 0 14 
471.69 3 2 1 0 15 
471.69 3 2 1 0 16 
471.69 3 2 1 0 17 
471.69 3 2 1 0 19 
471.69 3 2 1 0 21 
471.69 3 2 1 0 22 
471.69 3 2 1 0 23 
471.69 3 2 1 0 25 

Testosterone 

288.43 2 1 9 0 1 
288.43 2 1 1 0 3 
288.43 2 1 1 0 4 
288.43 2 1 1 0 5 
288.43 2 1 1 0 7 
288.43 2 1 1 0 9 
288.43 2 1 1 0 10 
288.43 2 1 1 0 11 
288.43 2 1 1 0 12 
288.43 2 1 1 0 13 
288.43 2 1 1 0 15 
288.43 2 1 1 0 16 
288.43 2 1 1 0 17 
288.43 2 1 1 0 19 
288.43 2 1 1 0 20 
288.43 2 1 1 0 21 
288.43 2 1 1 0 22 
288.43 2 1 1 0 23 
288.43 2 1 1 0 25 
288.43 2 1 1 0 26 
288.43 2 1 1 0 27 

Trovafloxacin 

416.36 7 3 1 0 2 
416.36 7 3 1 0 3 
416.36 7 3 1 0 5 
416.36 7 3 1 0 9 
416.36 7 3 1 0 12 
416.36 7 3 1 0 14 
416.36 7 3 1 0 16 
416.36 7 3 1 0 21 
416.36 7 3 1 0 25 
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Valproic-acid 

144.22 2 1 9 0 1 
144.22 2 1 1 0 3 
144.22 2 1 1 0 4 
144.22 2 1 1 0 5 
144.22 2 1 1 0 7 
144.22 2 1 1 0 8 
144.22 2 1 1 0 9 
144.22 2 1 1 0 10 
144.22 2 1 1 0 11 
144.22 2 1 1 0 12 
144.22 2 1 1 0 13 
144.22 2 1 1 0 14 
144.22 2 1 1 0 15 
144.22 2 1 1 0 16 
144.22 2 1 1 0 17 
144.22 2 1 1 0 19 
144.22 2 1 1 0 21 
144.22 2 1 1 0 22 
144.22 2 1 1 0 23 
144.22 2 1 1 0 24 
144.22 2 1 1 0 25 
144.22 2 1 1 0 27 

Vinblastine 

811.00 13 3 1 0 2 
811.00 13 3 1 0 3 
811.00 13 3 1 0 4 
811.00 13 3 1 0 5 
811.00 13 3 1 0 7 
811.00 13 3 1 0 8 
811.00 13 3 1 0 9 
811.00 13 3 1 0 10 
811.00 13 3 1 0 11 
811.00 13 3 1 0 12 
811.00 13 3 1 0 13 
811.00 13 3 1 0 14 
811.00 13 3 1 0 15 
811.00 13 3 1 0 16 
811.00 13 3 1 0 17 
811.00 13 3 1 0 19 
811.00 13 3 1 0 21 
811.00 13 3 1 0 22 
811.00 13 3 1 0 23 
811.00 13 3 1 0 24 
811.00 13 3 1 0 25 
811.00 13 3 1 0 26 
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Zinc Chloride 

136.29 0 0 1 0 5 
136.29 0 0 1 0 13 
136.29 0 0 1 0 15 
136.29 0 0 1 0 21 
136.29 0 0 1 0 25 

Ziprasidone 

412.95 5 1 1 0 3 
412.95 5 1 1 0 4 
412.95 5 1 1 0 5 
412.95 5 1 1 0 7 
412.95 5 1 1 0 11 
412.95 5 1 1 0 13 
412.95 5 1 1 0 14 
412.95 5 1 1 0 16 
412.95 5 1 1 0 19 
412.95 5 1 1 0 21 
412.95 5 1 1 0 22 
412.95 5 1 1 0 23 
412.95 5 1 1 0 25 
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Appendix C: Additional MATLAB Training Sessions 

Figures C.1-C.7 shows the ANN simulations results for a network using the 

training function trainscg.  The trainscg training function is similar the default function 

shown in Chapter 4, but it uses a scaled conjugate gradient to train the data in the 

network.  Trainscg also does not use mu as a network parameter to measure how well the 

network is performing during training.  This session was terminated due to the upper 

limits of epochs being reached.  Even through the network reached the maximum number 

of epochs, it still performed fairly well with an R-value of 0.93898.  Figure C.2 shows 

that the actual versus ANN derived disease plot appeared to follow a linear line but did 

have some curve to it.  This curve to the output data would explain the R-value being less 

than one.  The performance and MSE plots (figures C.3 and C.4) look identical because 

MSE is used with trainscg to measure the network performance.  It should also be noted 

that the network was consistently able to lower the performance/MSE over the course of 

the simulation indicating the network was able to continually improve over time.  Figure 

C.5 shows the regression plot which makes it clear that the ANN derived disease values 

did not directly lay along the one-to-one slope.  Figure C.6 shows numerous fluctuations 

in the gradient and the network tried to increase the performance and Figure C.7 shows 

the error histogram highlighting that most of the error in the network was small, but not 

small enough to produce a linear output.  
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Figure C.1: Trainscg Training Session 



 

108 

 

Figure C.2: Trainscg Actual Disease versus ANN Derived Disease Outputs Plot 
 



 

109 

 
 

Figure C.3: Trainscg Performance Plot 
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Figure C.4: Trainscg Mean Squared Error Plot  
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Figure C.5: Trainscg Regression Plot 
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Figure C.6: Transcg Training States 
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Figure C.7: Trainscg Error Histogram  
. 
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Figures C.8-C.14 shows the ANN simulations results for a network using the 

training function trainrp.  The trainrp training function is similar the default function 

shown in Chapter 4, but it uses resilient backpropagation to train the data in the network.  

Trainrp also does not use mu as a network parameter to measure how well the network is 

performing during training.  This session was terminated due to the gradient lower limit 

indicating the network potentially performed well.  However, then reviewing Figure C.9 

and the R-value, it is apparent the ANN derived disease values do not follow a one-to-one 

slope.  In addition to the R-value of 0.53903, the regressions plot in figure C.12 shows 

the ANN derived disease values follow a slope of 0.5 to 1 which indicates the network 

predict values half that of the actual values.  The performance and MSE plots (Figures 

C.9 and C.10) look identical because MSE is used with trainscg to measure the network 

performance.  Figure C.13 shows a consistently decreasing gradient and Figure C.14 

shows the error histogram highlighting that minimal error occurred over a wide range, the 

majority of the error was small. 
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Figure C.8: Trainrp Training Session 
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Figure C.9: Trainsrp Actual Disease versus ANN Derived Disease Outputs Plot 
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Figure C.10: Trainrp Performance Plot 
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Figure C.11: Trainrp Mean Squared Error Plot 
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Figure C.12: Trainrp Regression Plot 
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Figure C.13: Trainrp Training Parameters 
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Figure C.14: Trainrp Error Histogram 
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Appendix D: TVT Graphs 

The following figures show the results of the five ANN simulations for each TVT 

ratio.  The 70-15-15 percent and 80-10-10 percent ratios were the only ones to produce 

linear plots where all of the ANN derived values were positive and the 70-15-15 percent 

ratio was the only one to produce ANN derived values on the one-to-one slope for all five 

simulations.  The default train training function was used for all of the TVT simulations. 
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Figure D.1: 50-25-25 % TVT Ratio Plot 
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Figure D.2: 60-20-20% TVT Ratio Plot 
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Figure D.3: 70-15-15% TVT Ratio Plot 
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Figure D.4: 80-10-10% TVT Ratio Plot 
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Figure D.5: 90-5-5% TVT Ratio Plot 
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Appendix E: List of Training Functions 

Table E.1 shows each of the training functions used in the ANN simulations along 

with a brief of description of how each function trains the network.  All of the 

descriptions were found in the MATLAB Neural Network Toolbox Reference Guide.  
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Table E.1: Training Function Descriptions 
 

Training 
Function Description 

train Default training function used in the MATLAB ANN.  Usually 
defaults to trainlm functions. 

trainb Trains a network using batch training by updating weight and bias 
learning rules 

trainc Trains a network cyclical order weight and bias learning rules 
traincgb Trains a network using conjugate gradient backpropagation in 

conjunction with Powell-Beale restarts to update weight and bias 
values 

traincgf Trains a network using conjugate gradient backpropagation in 
conjunction with Fletcher-Reeves updates to update weight and 
bias values 

traincgp Trains a network using conjugate gradient backpropagation in 
conjunction with Polak-Ribiere updates to update weight and bias 
values 

traingd Trains a network using gradient descent backpropagation to 
update weight and bias values 

traingda Trains a network using gradient descent with adaptive learning 
rate backpropagation to update weight and bias values 

traingdm Trains a network using gradient descent with momentum 
backpropagation to update weight and bias values 

traingdx Trains a network using gradient descent with momentum and 
adaptive learning rate backpropagation to update weight and bias 
values 

trainlm Trains a network using Levenberg-Marquardt backpropagation to 
update weight and bias values 

trainoss Trains a network using One-step secant backpropagation to 
update weight and bias values 

trainr Trains a network using random order incremental training with 
learning functions to update weight and bias values 

trainrp Trains a network using resilient backpropagation to update 
weight and bias values 

trains Trains a network using sequential order incremental training with 
learning functions to update weight and bias values 

trainscg Trains a network using scaled conjugate gradient 
backpropagation to update weight and bias values 
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Appendix F: Training Function Plots 

The following Figures F.1-F.15 show the actual disease values versus the ANN 

derived disease values for the 15 training functions tested in the ANN.  Each plot shows 

the three simulations run per training function, as well as a solid black line representing 

the desired one to one slope.  The one to one slope line makes it easier to distinguish 

whether individual trials and training functions as a whole were able to generate disease 

values similar to the actual values. 
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Figure F.1: Trainb Function Disease Plot 
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Figure F.2: Trainc Function Disease Plot 
 



 

133 

 
 

Figure F.3: Traincgb Function Disease Plot 
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Figure F.4: Traincgf Function Disease Plot 
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Figure F.5: Traincgp Function Disease Plot 
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Figure F.6: Traingd Function Disease Plot 
 



 

137 

 
 

Figure F.7: Traingda Function Disease Plot 
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Figure F.8: Traingdm Function Disease Plot 
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Figure F.9: Traingdx Function Disease Plot 
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Figure F.10: Trainlm Function Disease Plot 
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Figure F.11: Trainoss Function Disease Plot 
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Figure F.12: Trainr Function Disease Plot 
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Figure F.13: Trainrp Function Disease Plot 
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Figure F.14: Trains Function Disease Plot 
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Figure F.15: Trainscg Function Disease Plot 
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Appendix G: Uncurated chemical data 

Table G.1 contains the input data for each of the three uncurated chemicals used 

to test the predictability of the ANN.  The ANN derived species and disease outputs are 

also shown with the disease outputs round to the nearest whole number.  The rounding 

allowed the predictions to be matched up against the values used for the disease groups.  

The bolded rounded disease numbers and disease category outputs are those that have 

literature supporting the networks predictions.   
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